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Abstract

The space of lines in a Hermitean quadric of signature (2, 2) in complex projective three-
space is a quadric of signature (2, 4) in real projective five-space, the conformal compacti-
fication of Minkowski space. This geometric fact leads to the classical isomorphism of
PSU(2,2) and the identity component of PO(2, 4; R), the 15-parameter conformal group.
In this paper it is shown how the geometry and the isomorphism, for all components of
PO(2, 4; R), arise naturally from a real form of the Clifford algebra, and its associated
spin groups, of a certain complex vector space determined by skew-symmetric 4 x 4
matrices and having their Pfaffian as quadratic form.

1. Introduction

1.1. The group of conformal transformations of a real vector space V,
having a quadratic form with signature (s, # — §), s minus signs and # — s plus
signs, has been known for over a century; it is generated by inversions in
spheres analogous to M6bius inversions of Euclidean space. By adjoining a cone
at infinity to ¥, the conformal compactification ¥ of V is obtained; it is a
quadric of signature (s + 1, n — s + 1), in real projective space, on which the
conformal group acts globally as the projective orthogonal group PO(s + 1,
rn—§+1; R). When V' is Minkowski space, ¥ has signature (2, 4) and
PO(2, 4; R) is the 15-parameter conformal group.

The 15-parameter conformal group appeared, just after the tumn of the
century, as the group of transformations preserving the free-field Maxwell
equations; since then it has played a role in physics, but in this context is
usually described in terms of PSU(2, 2}, which is isomorphic to the identity
component of PO(2, 4; R). Such a description forms the basis of Penrose’s
twistors (Penrose, 1967).

It was observed by E. Study; E. Cartan, and others, early in this century,
that the complex lines lying in a Hermitean quadric & of signature (2, 2) in
complex projective 3-space are parametrized by the points of a quadric of
signature (2,4) in real projective 5-space (Study, 1924, p. 235). This is the
geometric reason for the isomorphism of PSU(2, 2) with the identity component

This journat is copyrighted by Plenum. Each article is available for $7.50 from Plenum
Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011.

937



938 FILLMORE

of PO(2, 4; R). If compactified Minkowski space W is viewed as the space

of generators of ®, the collineations and correlations of projective space which
preserve ® give, by permuting the generators of ®, the conformal transforma-
tions of ¥.

However, in this beautiful viewpoint for the conformal geometry of
Minkowski space, it is overlooked that this is a natural consequence of an
explicit description of a real form of a certain Clifford algebra. In this paper
we describe this natural algebraic setting and obtain from it both the geometry
and the isomorphism. An overview of this development follows.

1.2, A cetain six-dimensional complex vector space ¥ of 8 x 8 matrices,
determined by skew-symmetric 4 x 4 matrices and having their Pfaffian as
quadratic form, has all complex 8 x 8 matrices as its Clifford algebra. The
complex four-dimensional Plicker quadric £, defined by the vanishing of the
Pfaffian and lying in the complex projective S-space P° based on V, describes
lines in complex P3. The Clifford group of ¥ contains a subgroup, with identity
component isomorphic to SL(4; C), which maps, under the homomorphism
to PO(V), onto the group of collineations of P° preserving §2, and which
corresponds to collineations and correlations of P3 as they operate on lines.

A Hermitean form of signature (2, 2) defines a real 5-dimensional Hermitean
quadric ® in P3, and the antipolarity of P2 with respect to @ arises from a
complex conjugation of ¥ and its Clifford algebra. The points of €2 that
represent generators of @ are the points of £ fixed by the antipolarity as it
operates on lines and turns out to be compactified Minkowski space W. The
fixed points of the complex conjugation on V give a real form Vo of V; ¥ is a
quadric of signature (2, 4) lying in the real five-dimensional projective space
based on V. The spin group Spin (¥y), with identity component isomorphic
to STU(2, 2), maps onto PO(Vy), isomorphic to PO(2, 4; R), the group of
collineations of real projective 5-space preserving ¥, and corresponds to colline-
ations and correlations of complex P which, as they operate on lines, commute
with the antipolarity.

The homomorphism from Spin(¥) onto PO(V) extends to all four com-
ponents the usual homomorphism from SU(2, 2) to PO(2, 4; R). The colline-
ations and correlations of P° which commute with the antipolarity preserve
® and permute its generators; this corresponds to PO(Vy) operating on ¥ by
conformal transformations.

1.3. Sections 2 and 3 of this paper are summaries of facts needed later
about conformal geometry and about spin groups and Minkowski space. The
Clifford algebra arising from skew-symmetric matrices is developed in Section
4 and line geometry is described in terms of it in Section 5. Finally, in Section
6, the isomorphism, in its geometric form, is described in terms of spin groups.

2. Conformal Geometry

2.1. Let V be a real vector space of dimension # having a nondegenerate
quadratic form (x|x) of arbitrary signature. A sphere of ¥ with center a4 and
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square-radius R is described by (x — alx — @) = R. A sphere may not have any
real points in V, but always has points in the complexification of V. A sphere
is nonsingular if R¥ 0 and singular, or a cone, if R = 0. As a limiting case of
spheres with center @ + fu and square-radius t*(u |u), t = % oo, we have the
hyperplane (u|x — a) = 0, which. is nonsingular if (#|u) # 0 and singular if
(ulw)=0.

2.2. Inversion in the nonsingular sphere (x — 2 |x — @) =R is the trans-
formation o from ¥ to itself which sends x in ¥ to the point o(x) collinear
with @ and x and satisfying (6(x) — 2|x — @) = R. One has

R
ox)sa+t——(x—a
(x) &—au—@( )
This is defined only for (x — a|x — ) # 0, so inversion is an involutive
Cremona transformation of V. The limiting case of inversions in the spheres
with center a + tu and square-radius £2(uu), t - % =, (uu) # 0, is the
reflection
Aulx — a)
(ulu)

in the nonsingular hyperplane (u}x — @) = 0.

The inversion o, above, is the composition of translations, a homothety,
and the inversion x ~> {1/(x|x)]x in the unit spheré (x}x) = 1 centered at the
origin. The effect of a general inversion may be ascertained from that of
x = [af(x]x)]x orx = [1/(x|x)]x, inversion in (x|x) = a or (x|x) = 1.

Under inversion, a sphere is transformed into a sphere or hyperplane accord-
ing as the sphere does not or does pass through the center of the sphere of
inversion, nonsingular or singular according as the sphere is nonsingular or
singular. The same assertion holds for the transform of a hyperplane.

XX —

2.3. The vector space ¥V has a nondegenerate pseudo-Riemannian metric
given by its quadratic form: ds® = (dx|dx). In this metric, inversions in non-
singular spheres are conformal transformations and reflections in nonsingular
hyperplanes are isometries.

All inversions in nonsingular spheres and reflections in nonsingular hyper-
planes generate a group of Cremona transformations of ¥, the Mdbius group
M(V). A reflection in a nonsingular hyperplane can be obtained as a product
of inversions in nonsingular spheres, so inversions suffice to generate M(V).
Transformations in M(V) are conformal transformations of V; by a theorem
of Liouville and Lie, M(V) constitutes all such transformations.

Reflections in nonsingular hyperplanes passing through the origin generate
the orthogonal group O(V); O(V) is a subgroup of M(¥). Homotheties of V'
can be obtained as products of inversions in concentric nonsingular spheres,
translations of V as products of reflections in parallel nonsingular hyperplanes.
Consequently, M(V) contains all transformations

x> Aux +a, A # 0 real, u in O(V), ain V
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Furthermore, M(¥V") is generated by these transformations and the single
additional inversion x = [1/(x|x)]x.

2.4. With Vasin 2.1, let V= V + Re consist of vectors x' =x + ye, x in
¥,y real. Extend the quadratic form of ¥ to ¥ by (x'|x") = (x|x) + y?; this
extension is nondegenerate and its signature has one additional plus sign. Let
¥, denote the unit sphere (x'|x") =1 of V™,

Stereographic projection is the map ¢ which sends x in ¥ to the point
Y(x) # e in ¥ in which the line joining x to ¢ meets ¥;. One has

2 xlx)—1
x+ e=et ——r
) +17 xix)+1 x—elx—e)
for x in V. ¢ is a Cremona transformation, bijective from V- {(x|x) = —1}
to¥, — {y=1};y = 11is the tangent hyperplane to ¥, at e. Y coincides with
the restriction to ¥ of inversion in the sphere x'—elx'—e)= 2 of ¥*. Con-

sequently, with respect to the metric (dx'|dx") = (dx|dx) + dy? of V*
restricted to ¥ and ¥, stereographic projection is conformal.

Y(x)= (x—e

2.5. The image under ¥ of the sphere (x — a Ix — @) = R of V is the inter-
section of ¥, with the hyperplane (plx") = 1 or (2 — e}x’) = 0 of V" according
as{gla) —R+1i8%0o0r=0, where

2 (@la) - R — 1
at e
(@la)—R+1 (ala) —R+1
When the sphere is nonsingular, this hyperplane is not tangent to Wy its pole
with respect to ¥y, p or a — e, the latter at infinity, does not lie on ¥;.
The perspectmty of ¥, from a point p of V" not on ¥, is the map 7 which

sends x" in ¥, to the point m(x") in ¥, which is the second intersection of
the line joining x' to p with ¥y. One has

@ -1__ . 2-2l)

p:

) Dy e 120 Gl
I 1)) Ik SEPES
‘p+(x'—plx'-—p)(x P

7 coincides with the restriction to W of inversion in the nonsingular sphere
&' —plx' — p)=(pip) — 1, orthogonal to ¥y, of ¥*. 7 is an involutive
Cremona transformation and is conformal. Likewise, the perspectivity of ¥
along u in V*, (u|u) # 0, or from the point u at infinity not on ¥, coincides
wztgzhe restriction to ¥, of reflection in the nonsingular hyperplane (u]x) =0
of

If ¢ is inversion in the nonsingular sphere (x — alx —a)=Rof V, then o
transported to ¥, by stereographic projection, Yoy ™}, coincides with the
perspectivity of ¥, from p or a-e, as above, according as (¢l@) —R + 1is ¥ 0
or = 0. Thus, under stereographic projection from ¥ to ¥y, to nonsingular
spheres of ¥V correspond the intersections of ¥ with nontangent hyperplanes
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of ¥*. To inversion in a nonsingular sphere of V corresponds the perspectivity
of ¥, from the point not on ¥, that is the pole of the hyperplane correspond-
ing to the sphere.

Consequently, o > Yoy L, with inverse m = ¢ " n, is an isomorphism of
M(V) with the group of transformations of ¥, generated by perspectivities of
¥, from points not on ¥;.

2.6. With Vasin 2.1,let V¥ = ¥V + Re + Rf consist of vectorsx” = x +ye +zf,
x in ¥, y and z real. Extend the quadratic form of ¥ to ¥V* by (x"]x") =
(x]x) +y? — 22 this extension is nondegenerate and its signature has additionally
one plus sign and one minus sign. Let ¥ denote the quadric in the real projective
space P" "1based on V'* which is the image under the canonical map from v*
to P**! of the cone K, (x"[x") = 0, of V'*. If H is a singular hyperplane of V'*
not passing through the origin, then H N K, with metric (dx” |dx") = (dx|dx) +
dy* — dz?,is conformal to V. The collection of images in W of such H N K
generate an atlas which gives ¥ a conformal structure.

An isometry of V¥ preserves K and hence induces a collineation of P?**
which preserves ¥. Such a map is a conformal transformation of ¥, and hence
PO(V*) = O(V*)/{£1} is a group of conformal transformations of ¥; it is in
fact all of them. PO(V'*) is transitive on W, so the compact quadric ¥ is homo-
geneous under its group of conformal automorphisms. PO(V *) has real
dimension %(n + 2)(n + 1).

Forpin V¥, (plp) # 0, the map x" = x" — [2(p1x")/(p Ip)]p is an isometry
of ¥*, reflection in the nonsingular hyperplane (p|x") = 0 passing through the
origin. Such reflections generate O(V'*). A reflection, as above, corresponds
to a collineation of P**! which, when restricted to W, coincides with the
perspectivity of ¥ from p: The image of x” is the second intersection of the
line joining x” to p with W. p is not on ¥ and is the pole of the hyperplane
(plx") =0 of P"*1. Consequently: PO(V'*), as a transformation group of ¥,
is generated by perspectivities of ¥ from points not on ¥,

The map x = x + 3[(x|x) — 1] e+ 4[(x|x) + 1] fof Vinto {—y +z=1}NK,
followed by the canonical map from V™ to P**!, gives a conformal inclusion
of ¥ into ¥ with image an open dense subset of ¥. The complement of the
image is the cone at infinity for ¥, described in ¥ by —y +z = 0. ¥ is the con-
formal compactification of V. Points of K are classical polyspherical coordinates
for V. Viewed otherwise, x' - x' + f gives an inclusion of V" into P”*! and
hence of ¥ into W, this, preceded by stereographic projection ¢ from ¥ to
W, is the inclusion of ¥ into W. This latter viewpoint requires special treat-
ment of points for which (x|x)=—1 orz =0.

2.7. From 2.5, the image under the inclusion of ¥ into ¥ of the sphere
(x — alx — @) = R of V is the intersection of ¥ with the hyperplane (p|x") =0
of P"*! having pole given by
- +(a1a) -2R -1 e+(a1a) —2R + lf
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in V*. When the sphere is nonsingular, (p|p) = R is # 0 and p does not lie on
P, To inversion in the sphere (x — a|x — @) = R of V corresponds the perspec-
tivity x” = x" —[2(p 1x")/(p |p)]1 p of ¥ from p. The former generate M(V) and
the latter generate PO(V *); this leads to the isomorphism M(V) ~ PO(V*).
M(V) is a Lie group.

For the sphere (x |x) = a of V we have

'_—oz—~16+——a+l
P77 2

f

To inversion in this sphere corresponds the perspectivity

xX>x

of V.

2.8. Let V consist of real n-dimensional column vectors and have quadratic
form

Gelx) = =12 — - - — (2 + ()2 + -+ ()2 = Txdx

with matrix

Then the quadratic form of ¥* has matrix

A 0
A* = 1 0
0
0 -1
Thus
M(VY=PO(s+1,n—s+ L, R)=0(@+1,n—s+1; R)/{£l,.,}

where O(s + 1, n— s + 1; R) consists of all (n + 2) x (n + 2) real matrices g
satisfying ‘g4*g = A*. Via this isomorphism, conformal transformations of ¥V
are represented by g mod{#1,4,}, withg in O(s + 1, n — s + 1; R), as follows.
Rotations:
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uin O(V) = O(s,n — s; R). This is just O(V) as a subgroup of M(V) =~ PO(V*).
Translations:

1, —a a
x>x+ta g=l%ad | 1-3@la) 3iG@la)
ain ¥ ‘4 | —ala) 1+4(ia)
Homotheties:
J?i_;(?)\x real g= Ln 0
0 vy -1
-1 3+
Inversions:
1, 0
BT W RS TI R EY
c.f.2.7 Y(—a+lja) 3a+1/a)

When s =0, V is n-dimensional Fuclidean space, ¥ is an n-dimensional
sphere, and M(V) ~ PO(1,n + 1; R) is the familiar two-component Mobius
group. When n =4 and s = 1, V is Minkowski space, ¥ is its conformal com-
pactification, and M(V) =~ PO(2, 4; R) is the four-component 15-parameter
conformal group.

3. Spin Groups

3.1. Let V be a complex vector space of even dimension # having a non-
degenerate quadratic form (x{x). The Clifford algebra ((¥), of complex
dimension 2", contains ¥ and is generated by ¥ subject to the relations
xy +yx=-2(x|y)-1,xand y in V. C(V) is universal in the sense that any
linear map o of ¥ into an algebra satisfying o(x)o(y) + o(¥)(x) = —2(x1y) - 1
in the algebra extends uniquely to an algebra homomorphism of C(V) into the
algebra. Since the dimension of V is even, C(V) is a simple algebra and this
extension is either injective or trivial. As a consequence of this universality,
c(v) possesses an 1nvolut10n a ~ 1z and an anti-involution @ = & which are
extensions of ’x = —x and 'x =x, xin ¥, respectively. An element a of C(V)
is even or odd as ‘z is @ or —a.

The invertible elements g of C(V) for which g V!¢~ = ¥ constitute the
Clifford group D(V). For g in D(V) the linear transformation p(g) of ¥ defined
by p(g)x =gxg™! is in the orthogonal group O(¥). For nonisotropic @ in V,
(ala) #0,

(xla)
( la)

pl@)x =x ~
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is reflection in the nonsingular hyperplane of ¥ which is orthogonal to ¢ and
passes through the origin. Such reflections generate O(V), so p maps D(V)
homomorphically onto O(V); the kernel of pis C* - 1 consistingof A- 1,

A # 0 complex. An element g of D(V) has image in the special orthogonal
group O* (V) or its coset in O(V) as g is even or odd. p maps the subgroup
D*(V) of D(V) consisting of even elements onto O* (V) with kernel C*-1.
Since n is even, the image of z =eqe, . . . €, in D*(V), with the e; orthonormal,
(e;le) =1, is p(z) = —1 in O* (V).

Let W be a nonsingular subspace of ¥ of even dimension; that is, the restric-
tion to W of the quadratic form of ¥ is nondegenerate. Then C(W) is a sub-
algebra of C(V). Any x in ¥ is uniquely x =y +»’ with y in W and y’
orthogonal to W; for i in D(W), by’ =y'Th, so hx’Th ™t =hy'n™ +y'. Hence
D(W) is a subgroup of D(¥) and its inclusion corresponds, under p, to the
inclusion of O(W) in O(V) obtained by sending v to the linear transformation
vty sty

DW= p(vy

14 l ip
ow) :;c—; o)

The same assertions hold for the subgroups of even elements and the special
orthogonal groups.

3.2. Let ¥V, be a real vector space of even dimension » having a non-
degenerate quadratic form (x|x) of arbitrary signature. The considerations of
3.1 hold for ¥ with the evident changes. p now has kernel R * - 1.

For g in D(V,), define the scalar Ng by g”’g =g’’g =Ng- 1,2 > Ng is
multiplicative. Define the spin groups, subgroups of D( V), by

Spin(Vy) Ng=%1
Spin *(Vy) Ng==1 and g even
Spin! (V) Ng=+1 and g even

Spint (V) is connected and is the identity component of the other groups.

p maps these groups onto O(¥y), 0*(Vy), and their identity component
0Y(Vy), respectively. The kernel is {1} in each case. For if ¥, contains a
vector e such that Ne_ =—e_? =(e_le_) = —1, then D(V,) = Spin(Vy)  R*
and D(Vy) = Spin* (V) - R* = Spin! (V) - {1,e_} - R *; if the quadratic form
on Vy is positive definite so Ng > 0 always, then Spin1 (V) coincides with
Spin (V) as does 01 (V) with 0*(V). Since n is even, 'z =2, 7z =

(L1 (=012 52 = (_1)"(*=1D2 A and Nz = A, where A=1l(g;le;). z in
Spin*(V,) lies in Spin' (V) when A = +1.

Let W, be a nonsingular subspace of ¥ of even dimension. The inclusion
of D(W,) in D(V,) restricts to the inclusion of Spin(W) in Spin(¥) and this
corresponds, under p, to the inclusion of O(Wy) in O(Vy). The same assertions
hold for the other two spin groups.
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3.3. Let Vbe a complex vector space as in Section 3.1 and let x > “xbe a
complex conjugation on ¥ for which the quadratic form is real: x > “x is real
linear, “(Ax) = A°x, °(°x) = x, and (°x|°y) = (x[y). Let ¥, be the real subspace
of real vectors: “x = x. Note that any x in ¥ for which °x = Ax, X complex, is
necessarily of the form x = uxg, x¢ in ¥ and {ul= 1. For °(°x) = x yields
M =1, and then set A = u ™2 and x, = 4" x. This observation will be applied
to various spaces.

The conjugation on V extends to one on (X V), a > °a. Since V generates
C(V) and C(V,) as complex and real algebras, respectively, C(V,) is the real
subalgebra of C(¥) consisting of real elements: “a = ¢. The conjugation on
C(V) sends D(V) to itself; D(Vy) in D(V) is the subgroup of real elements:

“g =g The conjugation on ¥ induces one on linear transformations of ¥ by
“ux = °(u°x). This conjugation sends O(¥) to itself; O(Vy) in O(V) is the sub-
group of real elements: u = u. Note that °(p(g)) = p(°g), so p sends D(¥V )
onto O(¥y).

Since “(p(g)) = p(°g), for p(g), g in D(V), to be real, gg ™ must be in the
kernel of p:°g = Ag. Hence, the preimage under p of O(Vy) in D(V) is
DVe) - {ul} =Spin(Vy) - C*, |ul= 1. Likewise, the preimages under p of
0*(V,) and 0'(V,) are DY(V) - {ul} = Spin*(V,) - C* and Spin' (V) - C*;
these lie in D*(V).

3.4. Let V be a complex vector space of even dimension as in Section 3.1.
The projective orthogonal group of Vis PO(V) = O(V)/{£1}. g - p(g) mod
{£1}maps D(V') homomorphically onto PO(V) with kernel C*- {1,z}.If W
is a nonsingular subspace of ¥ of even dimension, the inclusion of D(W) in
D(V) corresponds to the inclusion of O(W) in PO(V') obtained by sending v
into its image in O(V) modulo {*1}. The same assertions apply to the pro-
jective special orthogonal group PO*(V) = 0*(V)/{x1} since V has even
dimension and z lies in D¥(V).

Let ¥, be a real vector space of even dimension as in Section 3.2.

g > p(g) mod {*1} maps Spin(V,) onto PO(V) = O(V)/{*1} with kernel

{£1, £z}; likewise Spin*(V) and PO*(Vy) = O (V,)/{£1}. If the number of

e; for which (e;le;) = —1 is even, so that Nz = A = +1 and z lies in Spin!(V),
then Spin'(¥,) maps onto the identity component PO (V) = 01 (V,)/{x1}

of PO(Vy) with kernel {£1, #z}. If the number of such e; is odd, so that

neither z lies in Spin’(¥,) nor —1 in 0'(¥), then PO (V) and 0 (V) are
isormorphic and Spin'(¥,) maps onto PO (V) with kernel {1}.1f W isa
nonsingular subspace of ¥ of even dimension, the inclusion of Spin(W,) in
Spin(¥,) corresponds to the inclusion of O(Wg) in PO(V). The same assertions
hold for the other two spin groups. :

Let ¥V be a complex vector space with a complex conjugation x - x as in
Section 3.3. The conjugation u — “u on linear transformations of ¥ induces
one on linear transformations modulo complex scalars by “(u mod C* - 1) =
“umod C* -1.u mod C* - 1 is real if “u = A, A # 0 complex. This conjugation
sends PO(V)=O(V) - C*/C* -1 to itself; PO(Vy) = O(Vy) * {ul}/{ul}, lul=1,
in PO(V) is the subgroup of real elements. The preimages in D(V), under
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g~ p(g) mod{*1}, of the various projective orthogonal groups of ¥ are the
same as those of the corresponding orthogonal groups.

3.5. For later use, we employ the considerations of Sections 3.1-3.3 to
determine the spin groups of Minkowski space.

Forany 2 x 2 matrix M = (% 5)in C®?), set SM=(_2 ~b).
SM="EVIM'E = E'ME™ is the transpose of M with respect to any alternating
form "xEy on C?: *("Mx)Ey = "xE(My); we will always use £=(_9 3).
Observe that: SMM = MM = (det M)1,,s0 M=M" if det M= 1;5CM)=M
and S(NM) = *M°N; and "M ="M =(_¢ ~9).

In the following sections, W denotes the complex vector space of dimension
4 consisting of 4 x 4 matrices x = (; }} £)in c D Xin @(2’2), having the
quadratic form (x |x) = —det X.

3.6. Since x2 = (det X)14 = —(x|x)14, the inclusion of W in C** extends
to an algebra homomorphism, necessarily injective, of C(W) into C* %), This
homomorphism is onto since C(W) and C** have dimensions 2% = 16 and
42 = 16, respectively. We identify C(W) = C% ¥,

Let e, e, €, e3 be the basis of W given by (s;} )g) withX=( D, ¢ D,

0, (é _ D), respectively. This basis is orthonormal, (e;e;) = ny;, where
7=("6 1, A=—1,andz=egeere3=(""3 _9 ). Forxin W,zxz™ = —x,
sola=zaz71, qin C* ¥ is the involution @ - 1z of C(W). Fora = (’é B,
A,..,DinC*? wehave lg= (_‘g ~B).

To determine D(W), it suffices to determine D *(W), since 14 and e are
representatives of its cosets. For g in C(W) even and invertible, g = (OA g),
detA #0,detD#0. Forx=(;2 %) in W, we have gx’g ™ = (%54 41 4XD7y
This lies in W when S(AXD ™) =DsXA™ or X544 = DD*X; that is,
det 4 = det D. Hence, )

D) = 4 0\|4,DinC®?
0 D)|{detA=detD#0

and, consequently,
A 0 0 B)|detd=detD#0
D(w) = {(0 D) or (c 0) det B =detc=f0}

3.7. In terms of the basis ey, €4, €3, €3 0f 3.6, set k =ege €3 = & £). Then
kek1=e;, so °x =kxk ™" is a complex conjugation of W having as real sub-
space Wy the real subsgace of W spanned by ey, €y, €3, €3. Wy consists of
x=egx? +ex! +eyx? +egx® =(:% &) with

0.3 1 .2
X +x X5 — X O 3
=l 1. .2 0 3 xY, ..., x”° real
xt+ixt x%-x
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Note that (x|x) = —det X = —(x®)? + (x1)? + (x%)? + (x"’)2 $0 Wo is Minkowski
space The con]uga'uon on W 1nduces the conjugation a =kak ™ on C(W). For
a= (C D) in C(W), 4, ...,Din C?), we have

et (0 E) (A B)f0 £\ _(£DE™ EEE“) D “é)
a= = = = - = B e
E o/\c D/\E © EBE™' EAE™ st stg

Especially, for x = (9 ‘3{) inW,% =@z ZX’); x is real when *X = X. C(Wy)
is the real 16-dimensional subalgebra

C(Wo) = {(stg stf‘l‘)

of C*9¥_ Since det’’4 = det A, we have

w02

o

The latter group has two components where det 4 is positive or negative.

A, Bin c(w}

det B # 0 and real

det 4 # 0 and real}

and

det 4 # 0 and real

Ain C&2 }

3.8 Fora=(4 B)inCW), 4,...,Din C®? we have

E 0\, (E 0\ _(E'AE™ E'CE™\ (%4 *

0 E/ \0 E E'BE™ E'DE™') \*B ¢
a~>E D% 1is an anti- 1nv01ut10n of C(W) which ﬁxes each x in W;it
is the ant1—1nvolut10na-—>Ja Ta=E 32 )L Note that Yo = (4, _SC).

Forg=(§ %) and (S,B &) in D(Wo), we have Ng=det 4 and —det B,
respectively. Hence

. {4 o 0 B\|detd==%1
Spin (W) = (0 stA—) or (StB 0) detB==1
. 4 0\|l4inC®@?
Spin (W) = (O StA._) det 4 = %1
_ A 0\|4inC®@?
Spin (W) = (O “ff) det 4A=+1

When det 4 = +1,%%4 =41, so the last group consists of matrices (& ¢9-1),
det A = +1, and is isomorphic to SL(2; C). SL(2;C) is connected, simply
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connected, and of real dimengion 6. Spin (W) is of real dimension 6 and has
four components, represented by

1, 0 0 il
14=( 2 ), det4=+1; e,e2e3=(. ;2) , detB=—
2

0 1 il,
o 1 il 0
e0=(12 02), det B=+1; z=eoelezeaz(02 "ﬂz)’ det4 =1

z does not lie in Spin !(W,) since A = —1.

3.9. The homomorphism p, p(g)x = gx’g ™", maps (W) and
D(Wy) onto O(W) and O(W,) with kernels C * - 14 and R* - 14, respectively.
If we refer p(g) to the basis eg, €, €4, €3 of 3.6,

3 .
gefg™ = 2 elp(e))i
i=0

v = p(g) is a complex or real 4 x 4 matrix, respectively, satisfying ‘vnv = 7.
That is, p maps Spin{(W,) onto the full Lorentz group O(1, 3; R) with kernel
{t14}. This latter group has four components, images of the four components
of Spin{ W), according to

1 0
p(la) =14, plejezes) =
0 -1,

peo)= ("f) (1’3) pE) =14

Finally, forg = (§ 15-1), det A +1, in Spin’ (W), and x = Cx ), X=X,
in Wy, the linear transformation x’ gxlg 1 is the familiar spinor form
X' = AX'A of a proper Lorentz transformation.

4. Skew-Symmetric Matrices

4.1. For a skew 4 x 4 matrix X = (X7) in C% 9, representing an alternating
form on row vectors, define the associated matrix X to be the skew 4 x 4
matrix, representing an alternating form on column vectors, with entries

4
w,5=1
where €45 is 1 or —1 if o is an even or odd permutation of 1234 and O
otherwise. If

0 x12 xi3 x4

vel - x2 o x23 _x*2

“x13 _x?3 0 X34
_x14 x| _y34 g
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then
0 X34 X42 X23
aX: -‘X34 0 X14 ___X13
__X42 _X14 0 Xl 2
__X23 Xl 3 ‘“‘Xl 2 0

Similarly, for skew U = (Uy;), define U to be the skew matrix with entries

4

1 ..

5 E el]aﬁUaB
o, f=1

where €7%F is defined like €ijap- The display of “U is the same as that of *X.
Note that ?(*X) = X, *(*U) = U, and that det?X = det X. In the notation of

3.5, if
aE B
X"("B dE)

ew_|dE —*'B
X N
B 4E

a and d complex, B in C& 2,
For a skew 4 x 4 matrix X, define the Pfaffian of X by

PEX = §DeypX T X*F = X12X34 + X132 + x14 x?3

likewise define pfU. Note that pf?X = pfX and XX = X*°X = —(pf X)1,.
Consequently, (det X)? = det(“XX) = (pfX)*, so det X = (pfX)%. If

akE B
X=
(—’B dE)
then pf X =ad —~ detB.

The key formula for the development to follow is, for X = (X¥) skew and
A=A )arb1trary in C4

“GA“(AX’A)A) = (det A)X

This is immediately proved using e,p,sA4%,42 4", g = (det A)e,y, o, 162
sunumation signs omitted, and developmgrze"’m"A“ (Gegpysd aXo‘é;l A%,
to obtain (det A)X7. For A invertible, det 4 #0, the formula gives
HAX'4) = (det A’ A719X 47,

As a consequence of this last formula, pf(4X"4) = (det 4) (pf X). We may
assume det 4 # 0, since otherwise both sides are zero. Then —pf(4X'4)14 =
HAX'AYAX'A) = (det A)(CA™ “XAHY(AX'4) = (det 4)’'A ! (-(pr’)14)54 =
~(det A)(pfX)1,.

In the following sections V denotes the complex vector space of dlmensmn
6 consisting of 8 x 8 matrices x ={_4,° ¢*)in C®®), where X in C* ¥ j
skew, and having the quadratic form ()§: jx) = —pfX.

then
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4.2. Since x* = (pfX)1g = —(x|x)1g, the same argument as in 3.6 shows
Q(V) is a subalgebra of C&®. C(¥) and C®® have dimensions 2 = 64 and
82 = 64, respectively, so we identify C(V)= C& ),

Setz=("1+ 9 Yin C(¥). Forxin V,zxz™" = —x,s0 la=zaz " ,ain c®8),
}s the irgoluéion a->1g of C(V).Fora=(4 8),A4,....Din C“ 9, we have

a=(_¢ "p) ‘

Preliminary to determining D(¥), observe that if M is a matrix such that
MX is skew for all skew X, then M is a scalar matrix. Consequently, if AXD™?
is skew for all skew X, so is "DAX ="D(AXD ™D, and then ‘DA is a scalar
matrix.

Let g in C(V) be even and invertible, g = (4 5), det A4 #0,detD # 0. For
x=( _a?( ‘g’) in ¥, we have gxlg™ = (_DGOXA“ A}gD ). Forthistoliein ¥V
for all x, AXD ™ must be skew for all skew X and *(4XD ) =D?*XA~*. From
the remark above, ‘DA = ply, p # 0 complex, and then *(AX(p’4 ™) ™) =
(A1) XA or (AX*4) = p*" 471 “XA™. Compare this with the key
formula of 4.1 to conclude det A = p?, and then det D = p*/det 4 = p%. The
same argument applied to g = (2 &) odd in C(V) yields the conditions ‘CB=p1,,
p # 0 complex, det B = det C = p?. Hence

(A 0) A, B, C Din C4¥ ]
DA =pla, p #0 complex
D(V)= or det 4 =det D =p?
0 B 'CB =ply, p #0 complex
det B =det C = p?
e o

The matrices of the first type constitute D* (V).

4.3. The homomorphism p, p(g)x = gx’g ™!, maps D(V) and D*(V) onto
O(V) and O*(V), respectively, with kernel C* - 1g. When x in V is referred to
the coordinates X of X, the quadratic form (x[x) = ~pfX =—(X'2X3% +
X133 x*2 + x14X23) has matrix (_213 "'gl +) with signature (3, 3), so O(V)

and O¥(¥) are isomorphic to O(3, 3; C) and 0*(3, 3; C); cf. Section 2.8.
Hence

D(V)/C*-15 ~0(3, 3, €) and D*(V)/C* - 15 ~0*(3,3; C)
If we factor out additionally z and its image p(z) = —1¢, we obtain
D(V)/C*- {15,2} = 0(3, 3; ©)/{+1¢} =PO(3, 3; C)
and
DY(V)[C* - {14,2} ~PO*(3,3;,0)
D(V') contains the subgroup

4 0 o B
=Wo ) ™ \st o

detB=+1

det 4 —'—'+1}
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with identity component G* =D*(V) N G isormorphic to SL(4,C). p maps
G and G* onto O(V) and O*(V) with kernel {£1g}. Hence the isomorphisms

G/{x1g} ~0(3, 3; C), G/{*lg, %2} ~PO(3,3; C)
and
SL(4; C)/{13}>G*/{x14} ~ 07(3,3; C)
PSL(4; C) = SL(4; C)/{*14, 21,4} ¥ G*[{*lg, £z} ~ PO*(3, 3; C)

These isomorphisms correspond to the isomorphism 43 =~ D5 of simple
complex Lie algebras.

4.4. Fora=(% B)inC(V), 4, ...,Din C*?, we have

0 14y, {0 1\ (D -'B
a I t
~1, 0 —14 O -fc 4

e~ (-9, §)% (], §)7'is an anti-involution of (V) which fixes each x
in V; it is the anti-involution a > 7a:’a = (_ ﬂ ' (_{)4 4™ Note that

—¢iD ¢
_Ua_ (tC tﬁ’)’

5. Line Geometry

5.1. A skew 4 x 4 matrix X = (X )in c“ 4, viewed as a bivector, is de-
composable, that is, of the form X = x"y — y’x or X¥ = x"y/ — y*x/ with x and
» column vectors of C*, exactly when pf X = 0. Up to a nonzero complex
scalar factor, X then depends only on the 2-space of C* spanned by x and y.
X is the matrix P = x"y — y'x of Pliicker coordinates p"j =xiy — yix/ of this
2-space or of the corresponding line joining the points x and y in complex
projective space P3. Dually, a 2-space of C* which is the intersection of two
3-spaces ux' =0 and vx’ =0, u and v row covectors of C*, has dual Pliicker
coordinates Q = uv — *vu or q;j = uvj — viuy; these are also the dual Pliccker
coordinates of the corresponding line in P° given as the intersection of two
planes. v

With Q as above, Ox" = “u(vx") — “w(ux'), so Ox' = 0 for any x’ in the inter-
section of ux" =0and vx’ = 0; and conversely since u and v are independent.
Ox' = 0 is the equation of the 2-space in C* or the line in P3 having dual
Pliicker coordinates . Dually, u'P = 0 gives the 3-spaces of C* or the planes
of P? containing the 2-space of C* or line of P3 having Pliicker coordinates P,

If P=x"y — y'x and Q = "uv — "vu describe the same 2-space of C* or the
same line of P3, then Q = N*P with A # 0 complex. For, PP = —(pf P)1, =0
and QP = “u(vx)’y — - - - + '(uy)"x = 0; and the skew matrices X satisfying
XP =0 constitute a one-dimensional space, as may be verified by choosing a

basis so that
01 0
p={=L0
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5.2. A collineation of complex projective space P? is described by a linear
transformation x' = Ax of column vectors x of C? representing points and
simultaneously a linear transformation u’ = u’D of row covectors u of C*
representing planes. In order that incidence be preserved, one requires
u'x’ = u’DAx to be a nonzero scalar multiple of ux, or ‘DA = pl,, p #0
complex. Let u? = p2/det A = det D/p?; then "D(uAd) = (up)14 and det(ud) =
det D = (up)?. Multiplying 4 or D by a nonzero scalar does not change the
collineation, so we may replace 4 by u4 and thus arrange A and D to satisfy
'DA = pl,, det A =det D = p2, p # 0 complex.

A correlation of P3, which sends points to planes and planes to points and
preserves incidence, is similarly described by «' = *x’C and x' = B'u, where we
may arrange 'CB = ply, det B = det C=p?, p # 0 complex.

All collineations and correlations of P constitute a group, and, if we
describe the collineations and correlations above by the matrices (‘3 S)and
& 13), respectively, a succession of transformations is described by the product
of the corresponding matrices. We thus have a homomorphism from the group
D(V) of Section 4.2 onto the group of collineations and correlations of P>. An
element of the kernel of this homomorphism is of the form (§ 3), with 4 =aly,
D =81,, aand 6 scalars, and the conditions ’DA4 =p 14, det A =detD = 0?
yield o* = 8% = (a8)? or 8 = *o; the kernel is C* - {15,z},z=("5+ 3,).
Hence we have the isomorphism

. {collineations and
D(r)[C* - {lg, 2} = (correlations ofP3)

5.3. The linear transformations describing a collineation, x’ = Ax and
u' =u'D, where 'DA = pl,4 and det 4 = det D = p?, induce linear transforma-
tions on skew matrices representing bivectors X = (XV) and bicovectors
U=(Uy) by X' = AX*A and U'= DU'D; this is consistent with X = x"y — y’x
and U = fuv — "vu when X or U is decomposable. Since DA = p1,, these are
X =pAXD™' and U = pDUA™. When —°X = U, we have

X' = —4(AX'4) = —(det AYA™1 XA = p2p~ ' D(-“X)p” V'D =DUD=U
by the key formula of Section 4.1. In this case we may write the linear trans-

formations as
0 Xy _ (4 0y({0 Xx\[4 0)"
2y of Plo pl/il-ex oflo b

Similarly, the linear transformations describing a correlation, «' = “x’C and
x' =B, where 7CB = pl4 and det B = det C'= p?, induce linear transformations
between skew matrices representing bivectors and bicovectors by U’ = CX*C
and X' = BU*B. Since "CB = pl, these are U' = pCXB™! and X' = pBUC™.
Again, when —%X = U, we have %X’ = U'. In this case we may write the linear
transformations as

(e o)ele ol o)le o)
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5.4 1let Vbe the complex vector space of dimension 6 of Section 4.2 ff.,
soxin Visx=(_9y 0) X in C% skew, and (x|x) = —pfX. Denote by Q
the Pliicker quadrlc (x[x) =0, of complex dimension 4, in the complex pro—
jective space P° based on V. A point x of £ represents a line of P?, X and —
being the matrices of its Pliicker coordinates and dual coordinates, respectlvely,
asin 5.1

The collmeatlons of P® which send £ to itself are described by lmear trans-
formations x” = Aux, u in O(V) A % 0 complex By 43uisux=gx’g™t gin
D(V), and by Section 5.3, x’ = Agx'g™! = £2gxg ™1 determines a collination or
correlation of P2. Consequently, the isomorphism of Sections 3.4 and 4.3,
between D(V)/C* - {1g, z} and PO( V) =~ PO(3, 3; C), is between the group
of collineations and correlations of P and the group of collineations of P*
that preserve £).

Geometrically, a point x of £ represents a line of P? described as the line
joining two points or as the line of intersection of two planes. A collineation
or correlation of P sends this line into another line similarly described. It is
represented on £ by a point that is the image of x under the corresponding
collineation of P° which preserves .

3.5, Let Hbe Hermltean, 'H=H,and of determmant det H=+1.The
antilinear transformatlons u' ="%(iH) and x" = (iH) "' describe an anti-
correlatmn of P that is involutive, that is, an antipolarity, since (iH) " *(%(iH)) =

—H Y fx = —x and "((iH) iz ")(IH) = _uH ' H = —u are scalar multiples of
x and u.

The antilinear transformations above induce antilinear transformations,
again involutive, between skew matrices representing bivectors and bicovectors
by U' = {GH)XGH) = ~HXH and X' = (H) " O'GH)™ = —H O*H™. When

~4X = U, we have

X' = (-H'U'H ") =(det H'YH UH = —"HXH=U'

by the key formula of 4.1. In this case we may write the antilinear transform-
ations as

(0 x\_[o (zH)"l) X) 0 (iH)‘l>‘1
—x o) \*Gm o ~x 0J\'GH) ©
(o —frl)( 0 x\[o —H“)‘l
'm0 J\-—ex o/\'m o

5.6. For the collineation of P® described by the lmear transformations
x' =Axand v’ =u’D,’D4 = =pl,, det A = det D = p?, to commute with the
antipolarity of 5.5, it must be that GH) ™ {@'D) = ?\A((u"i")”1 @) orH 'DH=
A with A # 0 complex. Necessarily }M =1, since A*det 4 = det(A4) =
det(H'DH) = det D = det A. From H™ LDH =\ we have A = \ LH - DHand
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"HA'"H =\ VI HA 'DH’H™ = AD; this gives "AH = NH'D and *(Ax)(iH) =
NCx(H))'D. The condition that the collineation commute with the anti-
polarity may be written

o )6 Bl 5 o)

where the complex scalar A # 0 depends on 4 and D. For such a collineation,

set A =p2, |ul = 1. Then “(uD)(uA) = (u?p)14, det(ud) = det (uD) = (u*p)*

and
(o —HY\ fua0 (0o -HY\ (14 0
‘H o J\0 uwD/\'H O o w

Multiplying A or D by a nonzero scalar does not change the collineation, so
we may replace 4 and D by ud and uD and arrange that the linear transform-
ations describing this collineation satisfy

b I

Similarly, for the correlation of P® described by the linear transformations
u ='%'Cand x' =B'u, 'CB=ply, det B = det C = p?, to commute with the
antipolarity, we obtain the conditions H *C*H ' = —AB and *HBH = —\C with
Al = 1. Again we may replace B and C by scalar multiples without changing
the correlation and arrange that A = 1. The condition on the linear transform-
ations that the correlation commute with the antipolarity may then be written

(0 a0 B\{o -#™\' (o B
‘H 0 ¢ o/\'H © c 0]’

5.7. The Hermitean quadric ® in complex projective space P which is
given as a locus of points by *%Hx = 0 or as an envelope of planes by #’H *u =0
has real dimension 5 and consists of all points or planes that are incident with
their corresponding plane or point under the antipolarity of Section 5.5; that
is, u'x = 0 for o’ = "%(H).

If a collineation or correlation of P> commutes with the antipolarity, it
necessarily sends 9 to itself. This can also be observed directly from the
relations of Section 5.6; for from AH = H'D and 'DA = p 14, we obtain
‘AHA = H'DA = pH and "(Ax)H(Ax ) = p'%Hx for collineations, and similarly
'BHB = —p*H ™ and "(B'u)H(B'u) = —pti’H " ?u for correlations. The converse
is also true. Hence the collineations and correlations of P° that commute with
the antipolarity are exactly those that preserve ®. The group of these trans-
formations will be described in Section 6.

5.8. The antipolarity of Section 5.5 transforms lines of P? into lines of P
in the same manner as do correlations in the close of 5.4. If P is the matrix of
Pliicker coordinates of a line, “HPH is the matrix of dual coordinates of its image
by 5.5. Thus a line is fixed under the antipolarity exactly when "HPH = \*P,\ #0
complex.
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The line joining x and y in P? lies in ®, that is, it is a generator of @,
exactly when *xHx =0, ’xHy =0, 'HZ =0, and *JHy =0. Set P=x"y — y’x.
These are equivalent to PHx = X(‘pHx) — y(*xHx) =0 and PHy = 0 since x and
y are independent vectors of C*. These, in turn, are equivalent to PHP =
(PHx)'y — (PHy)'x = 0. Hence, a line is a generator exactly when PHP =0,

From Section 5.1, the skew matrices X satisfying XP = 0 are a one-
dimensional space. Since “PP = —(pf P)1 4 = 0, "HPH = \*P is equivalent to
"HPHP = 0, that is, to PHP = 0. Consequently the lines of P3 that are fixed
under the antipolarity are exactly the generators of the Hermitean quadric ®.

6. The Isomorphism

Throughout this section, let ¥, as in Section 4.2 ff., be the complex vector
space of dimension 6 of 8 x 8 matricesx = (_¢, ¥)in C&®, X in C4¥
skew, and having the quadratic form (x|x) = —pfX. From Section 4.2, (V) =
€ ®® and there also is D(V) described.

6.1. Motivated by the considerations of Sections 5.5 and 5.6, define a
complex conjugation ¢ ~ ¢z on C(V) = C&® by

0 -HW_[fo -—-H}\1
Ca= a
H 0 H 0

where H is Hermitean "H = H, so °(a) = a. Indeed, this conjugation is the
extension to C(¥) of the involutive antilinear transformation on ¥V which
describes the antipolarity of 5.5 between bivectors and bicovectors. If
a= (’é 5),,4, ..., Din C%*% then
. [(H'DH -H'CH™
““\-tmBy tmA'H™
aisreal, “a =a,if C=—"HBH and D = "HA'"H ™.
Hereafter, H will always denote the Hermitean matrix H = ((1’2 a7 of
determinant det H = +1.

6.2. From Sections 4.1 and 6.1 an element of ¥ and its conjugate have the
form

aE B
—S'p dE

aF B
K
8 dE and x =| —————om
0 —dE B
—-B  -aE
xisreal, “x =x,ifa and d are real and °B =B. Set B=iX,FE with X, in C?),
Then *B = (—i)'ESX, = iE*X, = ' XoF, 50 *B = B when "X = X,. Set
x0+x3 X - z’xz)

and Xp=
0 (xl-i-ix2 x0 —x3

0 0

*T\ g B

0
B —aF

a=—-y+z
d=y+z
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Then real x have the form

[0 X L (rraE ixeE
‘X o) —XoE) (v +2)E

with x%, .. ., x3, ¥, z real. These real elements of ¥ constitute the real sub-
space Vg of dimension 6.

Note that det(iXoE) = —det X = —(x%)2 + (x1)% + (x*)? + (x3)?. For x
in ¥, as above, we have

(xIx) = —pf X = ~ad + det B = —(~y +2)(y +2) + det(iXoF)
= _(x0)2 + (xl)z + (x2)2 + (x3)2 +y2 _ 22

The quadratic form (x|x) of V restricted to V, has signature (2, 4), that is,
(—++++-).

Let eg, e, €5, €3, €4, e_ be the basis of ¥ obtained by taking successively
xo, x*, x4, x3, ¥,z equal to 1 and the others equal to 0. Thus, for example, ey

is the 8 x 8 matrix having alternately i and — along the upper-right to lower-
left diagonal and zeros elsewhere. This basis is orthonormal, (¢;1¢;) = %, where

-1 0
0
ot = 0 13 -
0
0 -1
A=+1, and
—il, 0
Z T egpei€q,83€64€_ = 0 i
4

6.3 By Section 3.3, D(V,) consists of the real elements inD(V) of 4.2.
Forg @& $)in D*(V) D4 = p14, det A=detD=p%p#0 complex, to be
real, g = g, we must have D = *HA’H ™! by Section 6.1. From D = p’A™! we
obtain “AHA = pH, both "AHA and H are Hermltean, so p is necessarily real.

Set p =A%, e==1,A>Oreal, theng = )\(0 ctd'- 1) where 4" =274,
e’4'1 =2"1D, det A’ =+1,and "A'"HA’ = eH. Hence

4 0 *AHA = eH, det A = +1
DY (Vo) ={A ’
Vo) {(o efA‘l) €=%1,A>0 real }

In a similar fashion, one obtains for the other coset of D*(Vy) in D(V)

0 B\ |’BHB=—¢'H ™!, det B=+1
A tB“l 0

e=%1, N> 0 real

Since TH™! = H, or equivalently, (_J 1, 0*) is real, the condition on B is the
same as that on 4.
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Forg =M 20 or Mgt &) inD(Vy), we have from Section 4.4 that
Ng = \?e. Hence the spin groups of V are

{ A 0 \|“dHA=eH
0 €47l | detd=+1,e=+1
Spin(Vo) =
0 B\| 'BHB=-€¢H™
\eB™ 0] | detB=+1,e=21]
. A 0 ‘AHA = eH
Spin™(¥) = 0 €47t det4A=+1,e=#%1

. A4 0 | *AHA=H
Spin(Vo)={lo t471) | deta=+1

Only Spin' (V) is a subgroup of the group G of Section 4.3.

Denote by SU(2, 2) the group of all matrices 4 in C** for which *AHA =
H and det 4 = +1; these are the matrices of the linear transformations of
determinant +1 which preserve the Hermitean form

%Hx = %'x% +5%2x* + 23x! + x%x?
=5xt #2312 ! - %317 + 4% +xH)2 - Hx? - x4
of signature (2, 2). SU(2, 2) is connected and of real dimension 15, but is not
simply connected.
Spin! (V) is isomorphic to SU(2, 2), so Spin(V,) and Spin*(¥) have

four and two components, respectively. Representatives of these components
are

1
2 0 0
0 1,

lg = . l 1, 0 €163 =

e=+1 0 1, e=+1 —~E 0
0 0 iF ily 0 0

ey = £ 0 eoL1€rE3 = 0 -l

o 0 i . 0€1€2€3 . 1, 0
e=~1 iF 0 e=—1 0 —il,

z= (i ‘34 ) lies in Spin1 (V) since A = +1.

6.4. The homomorphism p, p(g)x = gx’g™!, maps D(V) and D(V ) onto
(V) and O(V,) with kernels C* - 1 and R* - 1g, respectively. If we refer
p(g) to the basis eg, €1, €,, €3, e+, e_ of Section 6.2, ge,-Ig~1 = Ze:(p(8))}s



958 FILLMORE

u =p(g) is a complex or real 6 x 6 matrix, respectively, satisfying ‘un*u = n*,
where " is as in Section 6.2. Thus p maps Spin(¥) onto the real orthogonal
group O(2, 4; R), cf. Section 2.8, with kernel {*14}. This latter group has
four components, images of the four components of Spin(¥,) according to

1 0 o
; 1,5
p(lg)=1lg,  plejesez) =
0 1,
1 0 1, ©
01, ege1€,€63) =
ple)={ 0 1, plegerezes) (0 1)

0 1,

These may be obtained by noting that p(e;) is the reflection in the hyperplane
of V orthogonal to e; and passing through the origin, or by direct calculation
using the techniques of Section 6.6 below.

6.5. The homomorphism g - p(g) mod{£1¢} maps Spin(¥ o) onto PO(Vy) =
O(V)/{£1¢} with kernel {£1g, *z}, since z lies in Spin(¥) and p(z) = —15,
cf. Section 3.4. Consequently, we have the isomorphism we have been seeking:

Spin(Vo)/ {15, 2z} ~ PO(V)

This is a real form of the isomorphism corresponding to A3 ~ D; of Section
4.3. Since {13, *z} and {*1,]} lie in the identity components of Spin(V;)
and O(V,), respectively, these groups have four components. Since Spin’(Vy)
is isomorphic to SU(2, 2}, as in Section 6.3, the isomorphism restricted to the
identity components is

PSU(2, 2) = SU(2, DJ{1,, il 4} ~01(2, 4; R)/{£ 14} = PO'(2,4; R)

Let ® be the Hermitean quadric ¥Hx = #'x® + ¥%x* + x3x! + x%x? =

of real dimension 5 in complex projective space P3. A point of the Pliicker
quadric £, (x|x) = 0, in complex P5 based on V represents a line of P3 asin
Section 5.4. By Section 5.8, this line is a generator of ® exactly when it is
fixed under the antipolarity of 5.5. From Section 5.5 and 6.1, in terms of x in
V which is formed from the matrices of Pliicker coordinates and dual co-
ordinates of a line, this antipolarity operating on lines is given by the conjuga-
tion x — °x. x in € is fixed if °x is a nonzero scalar multiple of x, but, as in
Section 3.3, we may arrange that x itself is fixed. Hence, the generators of @
are represented by the fixed points in  of the conjugation x > °x. This set of
fixed points is the real quadric ¥, (x |x) = —(x9)? + (x1)? + (x?)% + (x3)* +
y? — 22 =0, cf. Section 6.2, in the real projective space Py° based on V.
Collineations and correlations of P correspond to collineations of P°
which preserve £. This yields the isormorphism between D(V)/C* - {13, 2}
and PO(YV) in Section 5.4. Collineations and correlations of P3 which preserve
® are those which commute with the antipolarity; as they operate on lines,
that is on £2, they preserve the set of fixed points ¥ of the antipolarity, and
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hence correspond to collineations of Py> which preserve ¥, cf. Section 5.6.
This yields the isomorphism between D(V)/R* - {14, 2} = Spin(V)/{#14, %2}
and PO(V ) above.

Compactified Minkowski space W, cf. Section 2.8, is the space of generators
of ® and the conformal transformations of ¥ are obtained as collineations and
correlations permuting these generators: A point of W represents a generator of
® and the image of this point under a conformal transformation is the point of
W that represents the image of the generator under the corresponding collin-
eation or correlation preserving @, cf. Section 5.4. This is the geometric descrip-
tion of the isormorphism (Study, 1924, p. 235).

6.6. Rotations, translations, homotheties, and inversions are conformal
transformations of Minkowski space and its compactification ¥ and hence are
elements of PO(V). We can exhibit explicitly elements g of Spin(V) so that
p(g) mod{x1lg}, from the isomorphism of Section 6.5, are these familiar
transformations. Cf. Penrose (1967), p. 357 ff.

The technique is the following. For x = (_2 X ff) inVoandg= (é 2t 4-1)
in Spin ¥(V,), ‘g = g, we have

o = pelgt = 0 eAx’a) _ 0 edX'4
P £ T etataxa o )T \qeaxty o

so x’ = gxg™! is determined by X’ = eAX’A. Similarily, for g = (2, 51 f ),
g = _g, we have X' = eB“X'B. These, together with

X=( (2 iXoE . =((y+z)E X oE)
~H@XoE) (v +2)E) (XoE) (-y +2)E

_ x0+x3 xl__ix2
Xo = o_ .3

xl+tix? X% - x

where

cf. Section 6.2, allows p(g) in (V) = O(2, 4; R) to be determined by
expressing x'°, . . ., x', ", 7’ linearly in terms of x°, . . ., x3,y, z.

Letg=(4 +, %) 4=(409;1), with Agin C??, det 4 = +1. Then
"AHA = H and det A = +1, 50 g lies in Spin’(V,). Note that 45! =4,, so0
X' = AX'4 above becomes

wolto O [((r+E ixeE 4o ©
0 'dy) \-iX.E) (v+2)E) 0 %4,
- (—y +Z)AOEtA iAoXoEsAO

A (XoEY Ay (v +2)"AE 4,
NOWAQEtAO =AOSA0E= (dEt AO)E=Eand iAoXoEsA-O = l‘AoXOtAQE, 50
we recognize X' as

(' +2VE  iXoE _((»+2)E iAdoXo'AoE
~(iXoE) (V' +2)E] \-(idoX'AoE) (v+2)E
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or Xo = A¢Xo"Ao,y" =y,2 =z. Hence p(g) = (§_%,) in O(V), where v in
O(1, 3; R) is the matrix describing X¢ = A ¢X "4 as in Section 3.9. Thus, g
in Spin{¥ ) describes a proper rotation or Lorentz transformation of ¥.

The map
A, O 4 0 (44 0
(0 ’Aa‘) 9<0 ’A‘l)’ . (0 ’Aa‘)
is the inclusion of Spin'(W,) of Section 3.8 in Spin*(V,) which corresponds

to the inclusion v > (§ $ ) of O (W) in O (Vy), cf. Section 3.2. The natural
extension of this to all of Spin{W ) will be discussed in Section 6.7.

Let
{4 o (1, 0
£ (0 ’A")’A (Mo 12)

with Mg in C®?, Then g liesin Slpinl(VO) exactly when tfiﬁg =H or
Mo + My =0. Set My =iE"AE ™ =¥ 44,40 = (%1122 % ~!%); the condition

at+ia® ¢°—a®

on M, becomes *A o = A . If we expand the right side of X' = AX"4 or

(' +2)E iXoE
—(iXoE) (' +2)E

_ 1, 0\ [((—y+2)E iX,E ' 1, 0
TNEAGE™ 1,) \FHGXGE) (v +2)E) \iE'AE™ 1,

we obtain
] ( (= +2)E i(Xo+ (v + Z)AO)E)
(X o+ (~y + 2)40)E) *

where the starred entry is
(y+2)E — E*AQE ' XoF — E'XoE Y AoE — (—y +2)E'AoE 1 AGE

Now, E*AoE Ay =404 = (det Ag)l, = —(az)l,, where aa = —(a®)* +
@")? +(@*)? +(@>)?, and, by polarization, E*A E ' Xy + E'XoE 14y =
—2(ax)1,, where ax = —a°%% +alx' +4%x? +4°x>. The starred entry is
(y +2) + 2ax + aa(—y +2))E. Thus
Xo=Xo tAg(—y t2)
't =y +z
v +z' =y +z+2ax +aa(—y +2)

or
y' =ax + (1 — aa)y +3aaz

Z =ax ~ Yaay + (1 +3aa)z
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Hence
—a° a°
—a' 4!
14 _a® g2
3 3
p(e) = e
-a%'%%® | 1-4aa o
—a%a'a’a® —daa 1+3aa

in O(Vy). From Section 2.8, g in Spin(V,) describes the translation x'*=x' +4
of ¥,
In the same manner, one ascertains that

(4 0 - eall, 0 a #0real
£ 80 a1 ’

0 aly e=%1
in Spin*(¥y) has image
(L | 0
ol 1 T+ NI -1

- 1N+ 1/

in O(Vy), where A = ea®. From Section 2.8, g in Spin(V) describes the
homothety x'? = Ax? of ¥,
Finally, from Section 6.2,

in Spin(¥V ) has image
0
ples) 1 0
0
01

in O(¥y). By Section 2.8, e.. describes inversion in the unit sphere centered at
the origin in W.

6.7. The subspace of ¥, consisting of x = (_2 ax ) X=(2 _tx, E) ’OXo ),

"Xy = X, is isomorphic to Wy of Section 3.7, for (x|x) = —pfX = det(iXoE) =
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—det X . The same assertion applies to the subspace of ¥ consisting of x with
Xgin C@ 2 and W of Sections 3.5 ff. Such an x can be written

0 0 Xo(E)
= SXo(iE) 0
0 GE) X, 0
(E) X, 0O
0 X, 0 1, 0 |iE 0O
g X O F e 0 1,|0 iE
’ —1, 0 |iE O
0 0 X 0 1,| 0 —iE
X, 0 2
Hence, the latter subspace is the image of W under the inclusion
A B
A B c D 0
F! F
(C D) - . |4 B
C D
A 0 0 B(E)
|o D CGE) 0
0 GE)'B | GE)TAGE) 0
GE)y'c o 0 (iE) " D(E)

of C4Min C&® 4 ... DinC®?, Thisis just the extension of the
inclusion of Win Vto the mclusmn of C(Wy=C*¥in c(Vy= c®,

The considerations of Section 3.3 and 3.2 apply, and the inclusion above
sends Spin(Wy) into Spin(Vy). Indeed, from the descriptions of these groups
in Sections 3.8 and 6.3, one obtains the inclusion on the various components

to be

(fgo S&o)’ detA0=+1—+(gi ’Z”l)’ ___(30 fi)rl)’ = +]
(glo S’Z‘o)’ aetAo—~1—>(‘§ _,1), A= (o 54-1)’ =1
s ) R P (R R
s, fo), ot Bo = 1 (?B . g), 5 (BE SBE) .
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Here we employ *4o = A5t or —Ag! asdet Ay = +1 or —1 to make the
necessary calculations. Note that the elements 1,eq, 16563, €g€1€2€3 0f 3.8
which represent the components of Spin(W,) are sent to those of Section 6.3
which represent the components of Spin(¥Vy).

From Section 3.2, this inclusion of Spin(W) in Spin(¥;) corresponds to
the inclusion v > (§ ) of O(Wy) in O(Vy). One component of the image of
Spin(W,) lies in each component of Spin(¥), likewise for O(W,y) and O(Vy).
The correspondence respects the components.

6.8. Conformal transformations of ¥ constitute the group PO(Vy) =
O(Vy)/{*14}. Rotations or Lorentz transformations of Minkowski space con-
stitute the group (W), are conformal transformations, and are obtained
from the inclusion v = (§ )mod {£14} of O(Wy) in PO(Vy). The homomor-
phism g - p(g) mod {+14} maps Spin( V) onto PO(V,) with kemel {£14,42},
z=(g i1, °). From Section 6.7, the image of Spin(W,) in Spin(¥,) meets
this kernel in exactly {£1g}, so this homomorphism restricts to the image of
Spin(W,) as the homomorphism p of Spin(W;) onto O(W,). Hence, as in 3.4,
the inclusion of Spin(Wy) in Spin{¥¢) corresponds to the inclusion of O(Wy)
in PO(V,).

Spin(Wo) 25 Spin(Vy)

2 to ll 14 to 1
OWe) =% PO(V,)
The correspondence respects components.
Thus the geometry of Minkowski space with group O(W,) extends to the
conformal geometry of its compactification ¥ with group PO(¥ ) as a natural
consequence of the inclusion of Spin(Wy) in Spin(Vy).
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