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Abstract  

The space of lines in a Hermitean quadric of signature (2, 2) in complex projective three- 
space is a quadric of signature (2, 4) in real projective five-space, the conformal compacti- 
fication of Minkowski space. This geometric fact leads to the classical isomorphism of 
PSU(2, 2) and the identity component of PO(2, 4; R), the 15-parameter conformal group. 
In this paper it is shown how the geometry and the isomorphism, for all components of 
PO(2, 4; R), arise naturally from a real form of the Clifford algebra, and its associated 
spin groups, of a certain complex vector space determined by skew-symmetric 4 x 4 
matrices and having their Pfaffian as quadratic form. 

1. Introduction 

1.1. The group of  conformal transformations of  a real vector space V, 
having a quadratic form with signature (s, n - s), s minus signs and n - s plus 
signs, has been known for over a century; it is generated by inversions in 
spheres analogous to M6bius inversions of  Euclidean space. By adjoining a cone 
at infinity to V, the conformal compactification • of  V is obtained; it is a 
quadric o f  signature (s + 1, n - s + 1), in real projective space, on which the 
conformal group acts globally as the projective orthogonal groupPO(s + 1, 
n - s + 1; gO). When V is Minkowski space, ~I~ has signature (2, 4) and 
PO(2, 4; •) is the 15-parameter conformal group. 

The 15-parameter conformal group appeared, just after the turn of  the 
century, as the group of  transformations preserving the free-field Maxwell 
equations; since then it has played a role in physics, but in this context is 
usually described in terms o f  PSU(2, 2), which is isomorphic to the identity 
component of  PO(2, 4; R). Such a description forms the basis o f  Penrose's 
twistors (Penrose, 1967). 

It was observed by E. Study, E. Caftan, and others, early in this century, 
that the complex lines lying in a Hermitean quadric q) o f  signature (2, 2) in 
complex projective 3-space are parametrized by the points of  a quadric of  
signature (2,4) in real projective 5-space (Study, 1924, p. 235). This is the 
geometric reason for the isomorphism of  PSU(2, 2) with the identity component 
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of PO(2, 4; R). If compactified Minkowski space g' is viewed as the space 
of generators of qs, the collineations and correlations of projective space which 
preserve q5 give, by permuting the generators of qh the conformal transforma- 
tions of ~ .  

However, in this beautiful viewpoint for the conformal geometry of 
Minkowski space, it is overlooked that this is a natural consequence of an 
explicit description of a real form of a certain Clifford algebra. In this paper 
we describe this natural algebraic setting and obtain from it both the geometry 
and the isomorphism. An overview of this development follows. 

1.2. A cetain six-dimensional complex vector space V of 8 x 8 matrices, 
determined by skew-symmetric 4 x 4 matrices and having their Pfaffian as 
quadratic form, has all complex 8 x 8 matrices as its Clifford algebra. The 
complex four-dimensional Plficker quadric f~, defined by the vanishing of the 
Pfaffian and lying in the complex projective 5-space pS based on V, describes 
lines in complex p3. The Clifford group of V contains a subgroup, with identity 
component isomorphic to SL(4; C), which maps, under the homomorphism 
to PO(V), onto the group of collineations o f P  s preserving ~2, and which 
corresponds to collineations and correlations o f P  3 as they operate on lines. 

A Hermitean form of signature (2, 2) defines a real 5-dimensional Hermitean 
quadric q~ in p3, and the antipolarity o f P  3 with respect to eb arises from a 
complex conjugation of Vand its Clifford algebra, The points of ~2 that 
represent generators of • are the points of ~2 fixed by the antipolarity as it 
operates on lines and turns out to be compactified Minkowski space ~ .  The 
fixed points of the complex conjugation on Vgive a real form Vo of V; tit is a 
quadric of signature (2, 4) lying in the real five-dimensional projective space 
based on Vo. The spin group Spin (Vo), with identity component isomorphic 
to SU(2, 2), maps onto PO(Vo), isomorphic to PO(2, 4; R), the group of 
collineations of real projective 5-space preserving q/, and corresponds to colline- 
ations and correlations of complex p3 which, as they operate on lines, commute 
with the antipolarity, 

The homomorphism from Spin(V0) onto PO(Vo) extends to all four com- 
ponents the usual homomorphism from SU(2, 2) to PO(2, 4; R). The coltine, 
ations and correlations of P" which commute with the antipolarity preserve 
q5 and permute its generators; this corresponds to PO(Vo) operating on • by 
conformal transformations. 

1.3. Sections 2 and 3 of this paper are summaries of facts needed later 
about conformal geometry and about spin groups and Minkowski space. The 
Clifford algebra arising from skew-symmetric matrices is developed in Section 
4 and line geometry is described in terms of it in Section 5. Finally, in Section 
6, the isomorphism, in its geometric form, is described in terms of spin groups. 

2. Con formal Geometry 

2.1. Let V be a real vector space of dimension n having a nondegenerate 
quadratic form (x ix) of arbitrary signature. A sphere of Vwith center a and 
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square-radius R is described by (x - a Ix - a) = R. A sphere may not have any 
real points in V, but always has points in the complexification of  V. A sphere 
is nonsingular i f R ~  0 and singular, or a cone, i fR  = 0. As a limiting case of  
spheres with center a + tu and square-radius t2(u lu), t ~ + % we have the 
hyperplane (u Ix - a) = 0, whick is nonsingular if (u lu) ~ 0 and singular if 
( u l u )  = 0. 

2.2. Inversion in the nonsingular sphere (x - a lx - a) = R  is the trans- 
formation a from V to itself which sends x in V to the point a(x) collinear 
with a and x and satisfying (a(x) - a Ix - a) = R. One has 

R 
o(x )  = a + ( x - a )  

(x - a lx - a) 

This is defined only for (x - a Ix - a) 5 ~ 0, so inversion is an involutive 
Cremona transformation of V. The'limiting case of  inversions in the spheres 
with center a + tu and square-radius t2(u lu), t ~ + % (u [u) $ 0, is the 
reflection 

2(u Ix - a)  
X ' + X  U 

(UIu) 
in the nonsingular hyperplane (u Ix - a) = 0. 

The inversion e, above, is the composition of  translations, a homothety ,  
and the inversion x -+ [1/ (x lx)]x  in the unit sphere (xlx)  = t centered at the 
origin. The effect of  a general inversion may be ascertained from that  of  
x -~ [a/(x lx)]x  o r x  --" [1/(xlx)]x,  inversion in (xlx)  = a or (xlx)  = 1. 

Under inversion, a sphere is transformed into a sphere or hyperplane accord- 
ing as the sphere does not  or does pass through the center of  the sphere of  
inversion, nonsingular or singular according as the sphere is nonsingular or 
singular. The same assertion holds for the transform of  a hyperptane. 

2.3. The vector space V has a nondegenerate pseudo-Riemannian metric 
given by its quadratic form: ds 2 = (dx Idx). In this metric, inversions in non- 
singular spheres are conformal transformations and reflections in nonsingular 
hyperplanes are isometrics. 

All inversions in nonsingutar spheres and reflections in nonsingular hyper- 
planes generate a group of  Cremona transformations of  V, the Mbbius group 
M(V).  A reflection in a nonsingular hyperplane can be obtained as a product 
of  inversions in nonsingular spheres, so inversions suffice to generate M(V) .  
Transformations in M ( V )  are conformal transformations of  V; by a theorem 
of  Liouville and Lie, M ( V )  constitutes all such transformations. 

Reflections in nonsingular hyperplanes passing through the origin generate 
the orthogonal group O(11); O(V)  is a subgroup ofM(V) .  Homotheties of  V 
can be obtained as products of  inversions in concentric nonsingular spheres, 
translations of  V as products o f  reflections in parallel nonsingular hyperplanes. 
Consequently, M(V)  contains all transformations 

x ~ Xux + a, ~ ~ 0real ,  u in O(V),  a in V 
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Furthermore, M ( V )  is generated by these transformations and the single 
additional inversion x -+ [ t / (x  [x)] x. 

2. 4. With V as in 2.1, let V + = V + R e consist of  vectors x '  = x + ye ,  x in 
V , y  real. Extend the quadratic form of  V to  V + by (x ' l x ' )  = (x[x)  +y2 ;  this 
extension is nondegenerate and its signature has one additional plus sign. Let 
~1  denote the unit sphere (x '  Ix') = 1 of  V +. 

Stereographic projection is the map ~ which sends x in V to the point 
qJ(x) ~ e in ~1  in which the line joining x to e meets ~ 1 .  One has 

2 (x I x ) -  1 2 
- -  - -  e )  ( x  ~ ( x ) = ( x l x ) + l X + ( x l x ) + l  e = e + ( x _ e l x  - - e )  

for x in K ~ is a Cremona transformation, bijective from V -  {(x [x) = - 1 }  
to xIq - {y = 1};y = 1 is the tangent hyperplane to tI' 1 at e. ~ coincides with 
the restriction to V of  inversion in the sphere (x '  - e Ix' - e) = 2 o f  V +. Con- 
sequently, with respect to the metric (dx'  [dx') = (dx [dx) + dy  2 of  V + 
restricted to V and xtq, stereographic projection is conformal. 

Z5.  The image under ~ of  the sphere (x - a Ix - a) = R  of  Vis the inter- 
section o f ~  1 with the hyperplane (p lx ' )  = 1 or (a - e]x')  = 0 of  V + according 
as (a la) - R + 1 is ~ 0 or = 0, where 

2 + ( a l a ) - R -  1 
P = ( a l a ) - R + l  a ( a l a ) - R + l  e 

When the sphere is nonsingular, this hyperplane is not  tangent to tit t ; its pole 
with respect to • 1, P or a - e, the latter at int'mity, does not  lie on q 1- 

The perspectivity o f t l q  from a point p of  V* not on ~ 1  is the map rr which 
sends x '  in ~ I  to the point rr(x') in ~ l ,  which is the second intersection of 
the line jo in ingx '  to p with tI' 1. One has 

(t7 Ip) - 1 2 - 2(,v Ix')  
rr(x') = 1 2(p lx,) + (p lp) x '  + ' +  - 1 - 2 ( p l x )  (pip)  p 

(pip)  - 1 
= P + (x' - p lx' _ p)  (X' - p)  

7r coincides with the restriction to ~1  of  inversion in the nonsingular sphere 
(x'  - p  Ix' - p )  = (p[P) - 1, orthogonal to ~ 1, of  V +. lr is an involutive 
Cremona transformation and is conformal. Likewise, the perspectivity of  ~1 
along u in V +, (u lu) P O, or from the point u at infinity not on ~ 1 ,  coincides 
with the restriction to ~ t  o f  reflection in the nonsingulat hyperplane (u Ix ')  = 0 
of  V +. 

If  a is inversion in the nonsingular sphere (x - a[x - a) = R  of  V, then a 
transported to q~ 1 by stereographic projection, ~ a ~ - l ,  coincides with the 
perspectivity of  ,Ix ~ from p or a-e, as above, according as (a [a) - R + 1 is ~ 0 
or = O. Thus, under stereographic projection from V t o  ~ 1 ,  to nonsingutar 
spheres of  V correspond the intersections of  K' 1 with nontangent hyperplanes 
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of V +. To inversion in a nonsingular sphere of V corresponds the perspectivity 
of ~ l  from the point not on ~1 that is the pole of the hyperplane correspond- 
ing to the sphere. 

Consequently, a -+ ~ q ~ - l ,  with inverse ~r -+ $ - l n ~ ,  is an isomorphism of 
M(V)  with the group of transformations of ~1 generated by perspectivities of 
"~t from points not on ~ l -  

2.6. With Vas in  2.1, let V -+ = V+ Re + ~fconsis t  ofvectorsx"=x +ye+zf,  
x in V, y and z real. Extend the quadratic form of V to V + by (x" Ix") = 
(x Ix) + y2 _ z2; this extension is nondegenerate and its signature has additionally 
one plus sign and one minus sign. Let ~ denote the quadric in the real projective 
space pn +1base d on V ± which is the image under the canonical map from V -+ 
to pn+l of the cone K, (x" Ix") = 0, of  V -~. I f H  is a singular, hyperplane of V -+ 
not passing through the origin, then H n K, with metric (dx Idx ) = (dx [dx) + 
dy 2 - dz 2, is conformal to V. The collection of images in • of such H (3 K 
generate an atlas which gives 't~ a conformal structure. 

An isometry of V -+ preserves K and hence induces a cotlineation o f P  n+l 
which preserves ,I,. Such a map is a conformal transformation of ~ ,  and hence 
PO(V +) = O(V+)/{ + 1} is a group of conformal transformations of 'Is; it is in 
fact all of them. PO(V +-) is transitive on 't~, so the compact quadric g'  is homo- 
geneous under its group of conformal automorphisms. PO(V +-) has real 
dimension ½(n + 2)(n + 1). 

• + t !  _ +  t f  t? . . 

F o r p m  V - , ( p J p ) ~ 0 ,  t h e m a p x  x - [2(plx ) / (plp)]plsanlsometry 
of + " " " " " V-, reflectmn In the nonslngular hyperplane (p [x ) = 0 passing through the 
origin. Such reflections generate O(V+-). A reflection, as above, corresponds 
to a collineation o f P  n+l which, when restricted to ~ ,  coincideswith the 
perspectivity of 'IJ from p: The image of x" is the second intersection of the 
line joining x" to p with ~.  p is not on • and is the pole of the hyperplane 
(p Ix") = 0 o fP  n + 1. Consequently: PO(V+-), as a transformation group of ~ ,  
is generated by perspectivities of ~I' from points not on ~ .  

The m a p x  -->x + ½[(x Ix) - 11 e+ ½[(x tx) + 1 ] f o f  Vinto ( - y  +z  = l} NK, 
followed by the canonical map from V -+ to pn+l, gives a conformal inclusion 
of V into qJ with image an open dense subset of ,I~. The complement of the 
image is the cone at infinity for V, described in '~ by - y  + z = 0. • is the con- 
formal compactification of K Points of K are classical polyspherical coordinates 
for K Viewed otherwise, x '  -+x'  + fgives an inclusion of V + into pn+l and 
hence of 'It t into ~ ,  this, preceded by stereographic projection ~ from V to 
qQ, is the inclusion of Vinto ,tt. This latter viewpoint requires special treat- 
ment of points for which (x ]x) = - 1  or z = 0. 

2. 7. From 2.5, the image under the inclusion of Vinto ,It of the sphere 
(x - alx - a) =R of Vis the intersection o f ~  with the hyperplane (plx") =0  
o f P  n+l having pole given by 

(ala) - R  - 1 (ala) - R  + 1 
p = a  ÷ e'~ f 

2 2 
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in V ±. When the sphere is nonsingular, (p IP) = R is 5 ~ 0 and p does not lie on 
• . To inversion in the sphere (x - a ix - a) = R of  V corresponds the perspec- 

• . I t  ~ ~1 f i x  Uvaty x x - [2(/9 Ix )/(p IP)] P of  • from p.  The former generate M(V) and 
the latter generate PO(V±); this leads to the isomorphism M(V) ~PO(V±).  
M(V) is a Lie group. 

For the sphere (x Ix) = a of  V we have 

- a  - 1  - a  + 1 
P= 2 ,e+ 2 f 

To inversion in this sphere corresponds the perspectivity 

x - + x  

e ~ l ( - ~ - l ) e + l ( - a + l ) f  

1 1 1 1 

ofqJ. 

2.8. 
form 

Let V consist of  real n-dimensional column vectors and have quadratic 

(xlx)  = - ( x l )  2 . . . . .  (xS) 2 + (xS+l) 2 + " "  + (xn) 2 = txAx 

with matrix 

A = (  ; l s  ~n-s)  

Then the quadratic form of V ± has matrix 

Thus 

A ± =  1 

0 

M(V) ~-PO(s + 1, n -  s + 1; R) =O(s + 1 , n -  s + 1; N)/{+-ln+2} 

where O(s + 1, n - s + 1; 1R) consists of  all (n + 2) x (n + 2) real matrices g 
satisfying tgA±g = A +-. Via this isomorphism, conformal transformations of  V 
are represented b y g  mod{+ln+=}, w i thg  in O(s + 1, n - s + 1; ~) ,  as follows. 
Rotations: 

X -'->fiX 
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u in O(V) = O(s, n - s; R). This is just O(V) as a subgroup o f  M ( V ) ~  PO(V +-). 
Translations: 

1 n - a  a t 
g= taA 1 - ½ ( a l a )  ½(ala) 

\taA -½(ala)  1 +½(aia)] 

x - . -~x -ba  

ain V 

Homotheties: 

x -+Xx  
X ~ 0  real 

Inversions: 

g =  
(~ ½(x + l/x) 

½(x- a/h) 

0 

½(x- l/X) 
½(X + l /h)  ] 

(: 0 t x ~ (-~x)x g = ½(-a -1 /a)  ½(a - 1/a) 

c.f. 2.7 -~( -a  + l / a )  ½(or + 1/or) ] 

When s = 0, V is n-dimensional Euclidean space, ~I' is an n-dimensional 
sphere, and M(V)~-PO(1 ,  n + 1; R) i s  the familiar two-component  M6bius 
group. When n = 4 and s = 1, V is Minkowski space, ~I, is its conformal com- 
pactification, and M(V) ~- PO(2, 4; R) is the four-component 15-parameter 
conformal group. 

3. Spin Groups 

3.1. Let V be a complex vector space of  even dimension n having a non- 
degenerate quadratic form (x Ix). The Clifford algebra C(V), o f  complex 
dimension 2 n, contains V and is generated by V subject to the relations 
xy +yx = - 2 ( x  lY)" 1, x a n d y  in K C(V) is universal in the sense that any 
linear map ~0 of  Vinto  an algebra satisfying ~ x ) ~ ( y )  + ~ y ) ~ x )  = - 2 ( x  ly)" 1 
in the algebra extends uniquely to an algebra homomorphism of  C(V) into the 
algebra. Since the dimension of  V is even, C(V) is a simple algebra and this 
extension is either injective or trivial. As a consequence of  this universality, 
C(V) possesses an involution a -+ Za and an anti-involution a ~ 1a which are 
extensions of  Ix = - x  and Jx = x, x in V, respectively. An element a of  C(V) 
is even or odd as Ia is a or - a .  

The invertible elements g of  C(V) for which g VIg -1 = V constitute the 
Clifford group D(V).  For g in D(V)  the linear transformation p(g) of  V defined 
by p(g)x = gxZg -1 is in the orthogonal group O(V). For nonisotropic a in V, 
(ala) ~ 0 ,  

(xla) 
p(a)x = x -  2 ~ ,  ~ a 

tala) 
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iS reflection in the nonsingular hyperplane of Vwhich is orthogonat to a and 
passes through the origin. Such reflections generate O(V), so p maps D(V) 
homomorphicaUy onto O(V); the kernel o f p  is C* • 1 consisting of X" t, 
k ~ 0 complex. An element g of D(V) has image in the special orthogonal 
group 0+(11) or its coset in O(V) as g is even or odd. p maps the subgroup 
D+(V) of D(V) consisting of even elements onto 0+(I1) with kernel C *" 1. 
Since n is even, the image o fz  = ele 2 . . .  e n inD+(V), with the ei orthonormal, 
(ei lei) = + 1, is p(z) = - 1  in O+(V). 

Let W be a nonsingular subspace of V of even dimension; that is, the restric- 
tion to W of the quadratic form of V is nondegenerate. Then C(W) is a sub- 

. [ .  t • • ? 
algebra of C(V). Any x in V is uniquely x = y  y wgh y m W and y 

t r I  0 orthogonat to W; for h in D(W), hy = y h, s hxZh -1 = hyZh -x + y'. Hence 
D(W) is a subgroup of D(V) and its inclusion corresponds, under p, to the 
inclusion of O(W) in O(V) obtained by sending v to the linear transformation 
y +y' -+ vy +y'. 

i n c l .  
D( W) ~ D( V) 

Pl I p 
o(w) ~ o (v )  

i n c l .  

The same assertions hold for the subgroups of even elements and the special 
orthogonal groups. 

3.2. Let Vo be a real vector space of even dimension n having a non- 
degenerate quadratic form (x Ix) of  arbitrary signature. The considerations of 
3.1 hold for 17o with the evident changes, p now has kernel R * • t. 

For g in D(Vo), define the scalar Ng by glSg = g Jig =Ng" 1;g -+ Ng is 
multiplicative. Define the spin groups, subgroups of D(Vo), by 

Spin(Vo) Ng = +1 
Spin +(Vo) Ng=+-i and g even 
Spin 1 (Vo) Ng = +1 and g even 

Spin1 (Vo) is connected and is the identity component of  the other groups. 
p maps these groups onto O(Vo), O+(Vo), and their identity component 
Ol(Vo), respectively. The kernel is {-+1} in each case. For if Vo contains a 
vector e_ such that Ne_ = - e _  2 = (e_ le - )  = - 1 ,  then D(Vo) = Spin(Vo) ' ~* 
and D+(Vo) = Spin+(Vo) • •* = Spin1 (Vo) . {1,e_}- R *; if the quadratic form 
on V o is positive definite so Ng > 0 always, then Spin 1 (Vo) coincides with 
Spin+(V0) as does &(Vo)  with O+(Vo). Since n is even, Xz = z, Sz = 
(L-1)n(n- 1)/2Z, g 2 = (--1) n(n-1 )]2A, and Nz = A, where A = Fl(ei]ei). z in 
Spin+(Vo) lies in Spina (Vo) when A = +t. 

Let Wo be a nonsingular subspace of Vo of even dimension. The inclusion 
of D(Wo) in D(Vo) restricts to the inclusion of Spin(Wo) in Spin(Vo) and this 
corresponds, under p, to the inclusion of O(Wo) in O(Vo). The same assertions 
hold for the other two spin groups. 
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3.3. Let Vbe a complex vector space as in Section 3.1 and let x ~ Cx be a 
complex conjugation on V for which the quadratic form is real: x ~ Cx is real 
linear, C(Xx) =XCx, C(Cx) = x, and (Cx ICy) = (x ly). Let Vo be the real subspace 
of real vectors: Cx = x. Note that any x in V for whicli Cx = Xx, X complex, is 
necessarily of  the form x = gx o, Xo in V o and 1~1 = 1. For C(Cx) = x yields 
XX = 1, and then set X = p-2 and Xo = p-ix. This observation will be applied 
to various spaces. 

The conjugation on V extends to one on C(V),a ~ Ca. Since Vo generates 
C(V) and C(Vo) as complex and real algebras, respectively, C(Vo) is the real 
subalgebra of C(V) consisting of real elements: Ca = a. The conjugation on 
C(V) sends D(V) to itself; D(Vo) in D(V) is the subgroup of real elements: 
Cg =g. The conjugation on V induces one on linear transformations of Vby 
Cux = C(uex). This conjugation sends O(V) to itself; O(Vo) in O(V) is the sub- 
group of  real dements: Cu = u. Note that e(p(g)) = p(Cg), so p sends D(Vo) 
onto O( Vo). 

Since C(p(g)) = p(Cg), for p(g), g in D(V), to be real, Cgg-i must be in the 
kernel ofp:Cg = Xg. Hence, the preimage under p of  O(Vo) in D(V) is 
D{Vo)" (p l}  = Spin(Vo) " .C*, I~l = 1. Likewise, the preimages under p of 
O+(Vo) and O~(Vo) are D*(Vo)" {/~1} = Spin+(Vo) . C* and SpinI(V0) • C*; 
these lie in D +(V). 

3. 4. Let V be a complex vector space of even dimension as in Section 3.1. 
The projective orthogonal group of V is PO(V) = O(V)/{-+I }. g-~ p(g) mod 
(+1 }maps D(V) homomorphically onto PO(V) with kernel C*- {1, z}. If  W 
is a nonsingular subspace of V of even dimension, the inclusion of D(W) in 
D(V) corresponds to the inclusion of O(W) in PO(V) obtained by sending v 
into its image in O(V) modulo (-+1 }. The same assertions apply to the pro- 
jective special orthogonal group PO+(V) = O+(V)/{+I} since Vhas even 
dimension and z lies in D+(V). 

Let Vo be a real vector space of even dimension as in Section 3.2. 
g ~p(g) mod(+l} maps Spin(Vo) onto PO(Vo) = O(Vo)/(+l} with kernel 
{+1, +z}; likewise Spin+(Vo) and PO+(Vo) = O+(Vo)/{+l }. If  the number of 
ei for which (eilei) = - 1  is even, so that Nz = A = +1 and z lies in SpinX (go),  
then Spin x (Vo) maps onto the identity component pOI (go) = 0 X (go)/(+_ 1 } 
of PO(Vo) with kernel {+1, ~z}. If the number of such ei is odd, so that 
neither z lies in Spin 1 (go)  nor - 1 in O x (go),  then PO 1 (Vo) and O x (go)  are 
isormorphic and SpinX(Vo)maps onto poX(go) with kernel {+1}. If W 0 is a 
nonsingular subspace of 11o of even dimension, the inclusion of Spin(Wo) in 
Spin(go) corresponds to the inclusion of  O(Wo) in PO(Vo). The same assertions 
hold for the other two spin groups. 

Let Vbe a complex vector space with a complex conjugation x ~ Cx as in 
Section 3.3. The conjugation u ~ eu on linear transformations of  V induces 
one on linear transformations modulo complex scalars by C(u rood C* ' 1) = 
Cu rood C* • 1. u modC* • 1 is real ifCu = Xu, X ~ 0 complex. This conjugation 
sends PO(V) = O(V)- C*/C* • 1 to itself; PO(Vo) = O(Vo)" ~ul}/{pl}, [g[ = 1, 
in PO(V) is the subgroup of real elements. The preimages in D(V), under 
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g ~ p(g) mod(+ l} ,  of  the various projective orthogonal groups of  Vo are the 
same as those of the corresponding orthogonal groups. 

3.5. For later use, we employ the considerations of  Sections 3.1-3.3 to 
determine the spin groups of  Minkowski space. 

F o r a n y 2 x 2 m a t r i x M = ( a  ab) inC(2,2) ,setS _ d M -  (-c 
SM= rE-1 tMtE =EtME -1 is the transpose of Mwi th  respect to any alternating 
form txEy on C2: t(SMx)Ey = txE(My); we will always use E = ( _ o  ~). 
Observe that: SMM = MSM = (det 21//)12, so *M = M -1 if det M = 1; s(sM) = M 
and S(NM) = SMSN; and StM = tSM = (_ d -c) .  

In the following sections, 1¥ denotes the complex vector space of  dimension 
4 consisting o f  4 x 4 matrices x = (s ° x )  in C (4'4), X in C(2' 2), having the 
quadratic form (x Ix) = - d e t  X. 

3.6. Since x 2 = (det X) I  4 = - ( x  Ix)14, the inclusion of  W in C (4'4) extends 
to an algebra h0momorphism, necessarily injective, of  C(W) into C (4, 4). This 
homomorphism is onto since C(W) and C (4' 4) have dimensions 2 4 = t 6 and 
4 2 = 1 6, respectively. We identify C(W) = C (4, 4). 

Let eo, el ,  e2, e3 be the basis of  W given by (s ° Xoo) with X = (1 o), (o 1 10), 
(0 -d), (lo - o), respectively. This basis is orthonormal, (e i [ei) = rlii, where 
r ~ = ( - 1 0 0 ) , A = , l , a n d z = e o e l e 2 e a = ( i l a  0.1 ) . F o r x i n W ,  z'xz - l = - x ,  

O - -1  2 

so Ia = zaz-1, a in C (4' 4), is the involution a -+ Ia of  C(W). For a = (A ~), 
A . . . . .  D in C (2'2), we have ta = (_A - ~ ) .  

To determine D(W), it suffices to determine D+(W), since 14 and eo are 
representatives of its cosets. For g in C(W) even and invertible, g = (0 A 0) ,  

0 X • I - I  0 A X D  - 1  d e t A ~ 0 ,  d e t D ~ 0 .  Forx=(sx  o ) m W ,  w e h a v e g x g  =(DSJ(A "l 0 )" 
This lies in W when S(AXD-1) = DsXA-1 or SXSAA = SDDSX; that is, 
det A = det D. Hence, 

and, consequently, 

I(0 O)o (O 
detA = de tD~ t t3) 

~ ) 1  d e t A = d e t D ~ 0 }  

de tB  d e t C $ 0  

3. 7. In terms of the basis e o, e x, e2, e3 of  3.6, set k = eoelea  = (o 0E). Then 
k~ik -1 = el, so Cx = k2k-I  is a complex conjugation of  W having as real sub- 
space Wo the real subspace of  W spanned by e o, el, e2, ea. Wo consists of  
x = eo x°  + e l x  I + e2x 2 + eax 3 = (s ° x )  with 

X 0 + X  3 X t 

X = /x 2 xO x °, ., x 3 real 
X 1 + - -  X 3 ' • . 



FIFTEEN-PARAMETER CONFORMAL GROUP 947 

Note that (xlx) = -de t  X = - (x° )  2 + (xI) 2 + (x2) 2 + (x3) 2, so W 0 is Minkowski 
space. The conjugation on W induces the conjugation Ca = kdk -1 on C(W). For 
a = (A D B) in C(W), A,  ., D in C (2' 2), we have C " ° 

(O E)(A-Bt (0 ;,)-1 [EJDE-' ECE-I~ (st~ $t~t 
Ca = kak-1 = \C  D] \ E  = \EBE -1 E.4E -1] = \st~ st~] 

Especially, for x = (s°x x)  in W, Cx =(°stX oS); x is real when t~  = X. C(Wo) 
is the real 1 &dimensional subalgebra 

C(Wo) = t~ s A, B in C (2' 

of C (4' 4). Since detStA = det A, we have 

?) (o :)[det ,0andre / 
D(Wo) = s or st~ det B ~ 0 and real ) 

and 

I det A 0 and rea b 

The latter group has two components where det A is positive or negative. 

3.8. Fora=  (A D B) in C(W), A , . . . , D  in C(2'2),we have 

(E 00)ta(E 0 0E)-I {E tAE-1 EtCE-I 1 s C 

a ~ (g ~) ta (4 ~) -1 is an anti-involution of C(W) which fixes each x in W; it 
is the anti-involution a ~ J a:1a = (E ~) t a (E ° ~)-1. Note that/~a = (s_~ B %). 

For g = (8 st}) and (~t~ ~) in DWo), we have Ng = det A and -de t  B, 
respectively. Hence 

SPin(W°)=((  A s t O ) ° r t t O  B) ldetA-+ll}detB 

Spin l(Wo) = {( 0 

st O) AinC(2 '2) /  
detA = +1 j 

detA = +1 / 

When detA = + 1, st~ = t~ , l ,  SO the last group consists of matrices (o A tA0-1), 
det A = + 1, and is isomorphic to SL(2; C). SL(2;C) is connected, simply 
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connected, and of real dimension 6. Spin (Wo) is of real dimension 6 and has 
four components, represented by 

(10  t (0 t 14 = 2 0 detA --+1; e~e2es = , de tB = - i  
1 ' il 2 

(0 102), d e t B = + l ;  z=eoe~e2e3=(~12 0 ), d e t A = - I  
eo = 12 _i12 

z does not lie in Spin l(Wo) since A = -1 .  

3.9. The homomorphism p, p(g)x = gxIg -1 , maps D(W) and 
D(Wo) onto O(W) and O(Wo) with kernels C *" 14 and ~*" 14, respectively. 
If we refer p(g) to the basis e o, e 1, e2, e3 of 3.6, 

3 
ge/g -1= ~ ei(p(g))iJ 

i=o 
v = p(g) is a complex or real 4 x 4 matrix, respectively, satisfying tvrlv = rl. 
That is, p maps Spin (Wo) onto the full Lorentz group 0(1, 3; N) with kernel 
{+14}- This latter group has four components, images of the four components 
of Spin(Wo), according to 

p(14) = 14, p(ele2e3)=(; 

(--10 0 ) ,  p(z)-- - 14  p(eo) = la 

o X Finally, for g = (o A ~-a) ,  det A = +1, in Spin l(Wo), and x = (sx o ), tj~ = X, 
in Wo, the linear transformation x' = gxZg -1 is the familiar spinor form 
X' = AXtA of a proper Lorentz transformation. 

4. Skew-Symmetric Matrices 
4.1. For a skew 4 x 4 matrix X = (X/]) in C (4' 4), representing an alternating 

form on row vectors, define the associated matrix ax to be the skew 4 x 4 
matrix, representing an alternating form on column vectors, with entries 

4 
1 

a,fl=l 
where ei/c~# is 1 or - 1  if i/c43 is an even or odd permutation of 1234 and 0 
otherwise. If 

~ 0 X 12 

_X 12 o 

_X23 

\ _ X  14 142 

X 13 X14X~ 

X23 --X42.)__ 

0 0 X34 
_Xa4 
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then 

0 
a X = _ X 4 2  _ X  14 

- X  23 X 1 a 

x23\ 
X x4 -X13____ ~ 
o 

_X12 

Similarly, for skew U = (Ui/), define aUto be the skew matrix with entries 
4 

1 

a, fl=l 

where e i]a# is defined like eilc~ 3. The display of aUis the same as that of  ax. 
Note that a(ax) = X, a(au) = U, and that det ax  = det _7(. In the notation of 
3.5, if 

then 

a and d complex, B in C (2' 2 )  

ax = { dE - 

For a skew 4 x 4 matrix X, define the Pfaffian of X by 

p fX = ~ Z e i j c ~ 3 x i J x  c~3 = X 1 2 X  34 + X 1 3 X  42 + X 1 4 X  23 

likewise define pfU. Note that pfaX = pfX and aXX = XaX = - ( p f X ) t  4. 
Consequently, ( de t )0  2 = det(axx)  = (pfX) 4, so det X = (pfX) 2. If  

X= - tB  dE 

then p fX = ad - detB. 
The key formula for the development to follow is, for X = (X i/) skew and 

A = (A~.)arbitrary in C (4'4), 

a(tAa(AXtA)A) = (det A)X 

This is immediately proved using eabrsAarqAbnArc, AS ~ = (det A)emna~, 
.. l m n  a 1 r ctfl, a 4 b summation signs omitted, and developing~e ~" A rn(~eabrsA aX ~ #)An 

to obtain (det A)JP 1. For A invertible, det A ~ O, the formula gives 
a(AXtA) = (det A)tA -1 aXA-1" 

As a consequence of  this last formula, pf(AXtA) = (det A) (pfX) .  We may 
assume det A ~ 0, since otherwise both sides are zero. Then -pf(AXtA)14 = 
a(AXtA) (AXtA) = (det A) (tA-I aXA-I) (AXtA) = (det A)tA -1 ( - (p fX)  14)tA = 
- (de t  A)(pfX)l  4. 

In the following sections V denotes the complex vector space of dimension 
6 consisting of 8 x 8 matrices x = (_a ° o x)  in C (S' ~), where X in C (4' 4) is 
skew, and having the quadratic form (5¢ Ix) = -p fX.  
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4.2. Since x 2 = (pfX)1 s = - (x  Ix)1 s, the same argument as in 3.6 shows 
C(V) is a subalgebra ofC (s' 8). C(V) and C (s' 8) have dimensions 26 = 6 4 and 
82 = 64, respectively, so we identify C(V) = C (s' 8). 

Set z = (-i~4 014 ) in C(V). For x in V, zxz -1 = - x ,  so Ia = zaz -1 , a in C (s' a), 
is the involutiona ~Ia of C(V). For _ A B a - (C D ) , A ,  • • . , D  in C (4'4), we have 
I a = (  A - g ) .  

Preliminary to determining D(V), observe that i fM is a matrix such that 
MX is skew for all skew X, then M is a scalar matrix. Consequently, ifAXD -1 
is skew for all skew X, so is tDAX = tD(AXD-1)D, and then tDA is a scalar 
matrix. 

Let g in C(V) be even and invertible, g = (~ DO), det A ~ 0,detD :~ 0. For 
x = ( _a ° x) in V, we have gxtg -1 = (_D°XA_~ AXD-' ). For this to lie in V 
for all x, AXD -1 must be skew for all skew X and a(AXD-1) = DaXA-1. From 
the remark above, tDA = pl 4, p 5 ~ 0 complex, and then a(AX(otA-1)-1) = 
(ptA-1)aXA-1 or a(AXtA) = p2tA-1 aXA-1. Compare this with the key 
formula of 4.1 to conclude det A = p 2, and then det D = p4/det A = p 2 . The 
same argument applied to g = (~ 0 B) odd in C(V) yields the conditions tCB =P 14, 
0 ~ 0 complex, det B = det C = p 2. Hence 

o? A,B, C, Din C(4, 4) | 

tDA= p14, # ~ 0 complex] 
det A = det D = ~o 2 
tCB = p 14, P ~ 0 complex 
det B = det C = p 

The matrices of the first type constitute D+(V). 

4.3. The homomorphism p, p(g)x = gxtg -1, maps D(V) and D+(V) onto 
O(V) and O +(V), respectively, with kernel C*" 1 s. When x in V is referred to 
the coordinates X i] of X, the quadratic fqrm (x Ix) = - p f X  = -(X12X 34 + 
XI3X 42 + X14X 23) has matrix (_°1~ -~o 13) with signature (3, 3), so O(V) 

and O+(V) are isomorphic to 0(3, 3; C) and 0+(3, 3; C); cf. Section 2.8. 
Hence 

D(V)/C* "ls -~O(3, 3; C) andD+(V)/C *" ls -~ O+(3, 3; C) 

If we factor out additionally z and its image p(z) = -16,  we obtain 

D(V)/C*. {ls, z} -~O(3, 3; C)/(+-I 6} = NO(3, 3; C) 

and 

D+(V)/C *" ( ls, z) -~PO+(3, 3;C) 

D(V) contains the subgroup 

G = { (  A tO i ) o r  ( t0B - 1 -  B) ldetA2+ll}detB 
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with identity component G + =D+(V) ~ G isormorphic to SL(4 ,  C). p maps 
G and G + onto O ( V )  and O+(V)  with kernel {+1 s}. Hence the isomorphisms 

G[(  + - 1 s} ~ 0(3, 3; C), G/(+ 18, + z }  ~- PO(3,  3; C) 

and 

SL(4; C)/{+14}~ G+/{_+ls} _~ 0+(3, 3; C) 

PSL(4;  C) = SL(4; C)/{_+ 14, -+ t14} -~ G+/{+-18, -+z} -~PO+(3, 3; C) 

These isomorphisms correspond to the isomorphism A 3 -~ Da of simple 
complex Lie algebras. 

4.4. For a = (~ g)  in C ( V ) ,  A . . . . .  D in C (4'4), we have (0 ::) 
~z ~ ( _ o ,  ~ , ) t  a (_o ,  ~4)-1 is an anti-involution of C(V) which fixes eachx 
in V; it is the anti-involution a ~ Sa:~a = ( _  o, ~,) t a (_o, ~,)-a. Note that 

tB xJ a = (ttl~ tA) .  

5. L ine  G e o m e t r y  

5.1. A skew 4 x 4 matrix X = ( X  i]) in C (4' 4), viewed as a bivector, is de- 
composable, that is, of the form X = x t y  - y t x  or X ij = x i y  ] - y i x /  w i t h  x and 
y column vectors of C 4, exactly when p fX = 0. Up to a nonzero complex 
scalar factor, X then depends only on the 2-space of  C a spanned by x and y. 
X is the matrix P = x t y  - y t x  of Plficker coordinates pii  = x i y i  _ y i x l  of this 
2-space or of the corresponding line joining the points x and y in complex 
projective space/,3. Dually, a 2-space of C 4 which is the intersection of two 
3-spaces ux '  = 0 and vx '  = 0, u and v row covectors of C a, has dual Plficker 
coordinates Q = tuv - tvu or qii = uivi - viu]; these are also the dual Pliicker 
coordinates of the corresponding line in p3 given as the intersection of two 
planes. 

With Q as above, Qx'  = tu(vx ' )  - tv (ux ' ) ,  so Qx'  = 0 for any x '  in the inter- 
0 section of ux '  = and vx  = 0; and conversely since u and v are independent. 

Qx' = 0 is the equation of the 2-space in C a or the line in/)3 having dual 
Plttcker coordinates Q. Dually, u'P = 0 "yes the 3-spaces of C 4 or the olanes 
o f P  a containing the 2-space of C 4 or l'l~e o f P  3 having Plficker coordinates P. 

I f P = x t y  - y t x  and Q = tuv - tvu describe the same 2-space of C 4 or the 
same line of P 3, then Q = XaP with X ~ 0 complex. For, app = - (p fP)14  = 0 
and QP = t u ( v x ) t y  . . . .  + t v ( u y ) t x  = 0; and the skew matrices X satisfying 
X P  = 0 constitute a one-dimensional space, as may be verified by choosing a 
basis so that  :(0ot: ) 
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5.2. A collineation o f  complex projective space p3 is described by a linear 
transformation x '  = Ax  of  column vectors x o f  C 4 representing points and 
simultaneously a linear transformation u'  = utD of  row covectors u o f  C 4 
representing planes. In order that incidence be preserved, one requires 
u'x' = utDAx to be a nonzero scalar multiple ofux ,  or tDA = p14, p ~ 0 
complex. Let ~2 = p2/det A = det D/p2;  then t D ( ~ )  = ~ p ) l a  and det(t~A) = 
det D = (/~p)2. Multiplying A or D by a nonzero scalar does not change the 
coHineation, so we may replace A by/zA and thus arrange A and D to satisfy 
tDA = p14, det A = det D = p2, p ~ 0 complex. 

A correlation of P 3, which sends points to planes and planes to points and 
. . . . . .  1 t t r preserves incidence, is similarly described by u = x C and x = Btu, where we 

may arrange tCB = p 14, det B = det C = #2, p ~ 0 complex. 
All collineations and correlations o f P  3 constitute a group, and, if we 

describe the coUineations and correlations above by the matrices (Ao D °) and 
(O ~), respectively, a succession of  transformations is described by the product 
o f  the corresponding matrices. We thus have a homomorphism from the group 
D(V) of  Section 4.2 onto the group of  collineations and correlations o f P  3. An 
element of  the kernel o f  this homomorphism is o f  the form (0 A o ) ,  wi thA = a l  4, 
D = 61~, a and 3 scalars, and the conditions tDA= 19 14, det A = det D = p2 
yield a ~ = 34 = (a6) 2 or ~ = +a;  the kernel is C*"  ( l s ,  z}, z = ( - ~ ,  i ° ) .  
Hence we have the isomorphism 

[collineations and 
D (V ) /C*  • (18, z} ~ \correlations o f  P 3] 

5.3. The linear transformations describing a collineation,x' = A x  and 
u' = utD, where tDA= p14 and det A = det D = p2, induce linear transforma- 
tions on skew matrices representing bivectors X = (X  i1) and bicovectors 
U = (Uii) by X' = AXtA  and U'= DUtD; this is consistent with X = xty  - y tx  
and U = tuv - tvu when X or U is decomposable. Since tDA = p 14, these are 
X' = pAXD-1 and U' = pD UA -1. When - a x  = U, we have 

_ax~ = a(AXtA) = _(det A ) t A - l a X A -  1 = p2 p - l D ( _ a x )  p -  it D = DUtD = U' 

by the key formula of  Section 4.1. In this case we may write the linear trans- 
formations as ( 0  A o)(a o ° ° o) 1 

Similarly, the linear transformations describing a correlation, u '  = txtC and 
x' = Btu, where tCB = p 14 and det B = det C = p2, induce linear transformations 
between skew matrices representing bivectors and bicovectors by U' = c x t c  
and X' =BUtB. Since tCB = p14, these are U' = pCXB -1 and X'  = pBUC -1 . 
Again, when - a x  = U, we have - a x '  = U'. In this case we may write the linear 
transformations as 

(°a. : ) ( o  :)(o :)1 
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5.4. Let Vbe the complex vector space of dimension 6 of Section 4.2 ft., 
so x in Vis x = (_°a x oX), X in 12 (4, 4) skew, and (x Ix) = -pfX.  Denote by 12 
the Pliicker quadric (x Ix) = 0, of  complex dimension 4, in the complex pro- 
jective space pS based on V. A point x of 12 represents a line of P 3, X and - a x  
being the matrices of  its Plticker coordinates and dual coordinates, respectively, 
asin 5.1. 

The coUineations o f P  s which send 12 to itself are described by linear trans- 
formations x '  = Xux, u in O(V), X 5 ~ 0 complex. By 4.3 u is ux = g-xIg -1, g in 
D(V), and by Section 5.3, x '  = XgxXg -1 = -+Xgxg -~ determines a collination or 
correlation of P 3. Consequently, the isomorphism of Sections 3.4 and 4.3, 
between D(  V) /  C* . {Is,  z} and PO(V)  ~-PO(3, 3; C), is between the group 
of collineations and correlations o f P  3 and the group of collineations o f P  s 
that preserve I2. 

Geometrically, a point x of  I2 represents a line o f P  3 described as the line 
joining two points or as the line of  intersection of two planes. A collineation 
or correlation o f P  3 sends this line into another line similarly described. It is 
represented on 12 by a point that is the image o f x  under the corresponding 
collineation o f P  s which preserves 12. 

5.5. Let H b e  Hermitean, t/~= H, and of determinant d e t / / =  + 1. The 
antilinear transformations u' = t2(/H) and x '  = (/H) - l t~ describe an anti- 
correlation o f P  3 that is involutive, that is, an antipolarity, since (ill) -1 t ( t ~ )  = 
-1"1 - l  t l l x  = - x  and t ( ~ ) ( i H )  = - u  tI2I--1H = - u  are scalar multiples of 
x and u. 

The antilinear transformations above induce antflinear transformations, 
again involutive, between skew matrices representing bivectors and bicovectors 
by U' = t ( iH)X(iH) = - t H X H  and X' = (///)-10¢(/H)-1 = _H-10tH-a .  When 
- a x  = U, we have 

a X '  = a ( _ / . / - I  [TtH-1)  = (det H-1)tHaUH = - t H X H  = U' 

by the key formula of  4.1. In this case we may write the antilinear transform- 
ations as 

0 

a X' 

0 -V-- -2  0 

5. 6. For the collineation o f P  3 described by the linear transformations 
x'  = A x  and u' = utD, tDA = p14, det A = det D = p2, to commute with the 

I t  t I t  1 antipotarity of 5.5, it must be that (/H)- (~-D) = XA((/H)- ~) o r H - / ) H  = 
XA with X ~ 0 complex. Necessarily tXl = 1, since k4det A = det(XA) = 
det(H-1/)H) = det D = d e ~ .  From H - l b H  = XA we have A = X-lH-1/)Hand 
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tHAtH-I = ~-ltH~I-ID[-ItH-I = XD; this gives t.4H = XIttD and t(A-~)(///) = 
X(tYc(iH))tD. The condition that the collineation commute with the anti- 
polarity may be written 

0 (t H O H'-I) (t ° O/r~-l)-l=~.(A O) 
where the complex scalar ~ ~ 0 depends on A and D. For such a collineation, 
set ~ =/z 2, ]/~[ = 1. Then t(bug)(/zA) = ~2p)14,  det(pA) = det (/JD) = 0z2p) 2 
and 

0 ~ 0 - - o (0 : (o ;) 
Multiplying A or D by a nonzero scalar does not change the collineation, so 
we may replace A and D by/zA and/aD and arrange that the linear transform- 
ations describing this collineation satisfy 

(0 o) 
Similarly, for the correlation o f P  3 described by the linear transformations 

u' = txtC and x'  = Btu, tCB = p 14, det B = det C = p2, to commute with the 
antipolarity, we obtain the conditions H-1c_.tH -1 = -XB and tHIgH= - k C w i t h  
[)t I = 1. Again we may replace B and C by scalar multiples without changing 
the correlation and arrange that X = 1. The condition on the linear transform- 
ations that the correlation commute with the antipotarity may then be written 

(0 H _~-1)(C~) (t 0 _0H-1)-I =(0C B). 
5. 7. The Hermitean quadric ~b in complex projective space p3 which is 

given as a locus of points by tycHx = 0 or as an envelope of planes by utH-1 tu = 0 
has real dimension 5 and consists of  all points or planes that are incident with 
their corresponding plane or point under the antipolarity of  Section 5.5; that 
is, u'x = 0 for u' = t~(iH). 

If  a collineation or correlation o f P  s commutes with the antipolarity, it 
necessarily sends (b to itself. This can also be observed directly from the 
relations of Section 5.6; for from t.4H =HtD and tDA = p 14, we obtain 
tAHA = HtDA = pH and t(A-x)H(Ax ) = pt~Hx for coUineations, and similarly 
tBHB = -ptH-1 and t(atu)H(Btu) = -putH-1 tu for correlations. The converse 
is also true. Hence the collineations and correlations o f / ~  that commute with 
the antipolarity are exactly those that preserve ~. The group of these trans- 
formations will be described in Section 6. 

5.8. The antipolarity of  Section 5.5 transforms lines o f P  3 into lines o f P  s 
in the same manner as do correlations in the close of 5.4. I f P  is the matrix of  
Pti~cker coordinates of a line, tHPH is the matrix of  dual coordinates of  its image 
by 5.5. Thus a line is fixed under the antipolarity exactly when tHPH = k~P, X ~ 0 
complex. 
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The line joining x a n d y  in p3 lies in ap, that is, it is a generator of  dp, 
exactly when txHx = 0, t2Hy = 0, t2//:? = 0, and tyHy = 0. Set P = xty - y t x .  
These are equivalent to #HX = 2(t~Hx) - Y(t2Hx) = 0 and PHy = 0 since x and 
y are independent vectors of  C 4. These, in turn, are equivalent to ffHP = 
(PHx)ty - (fiHy)tx = 0. Hence, a line is a generator exactly when ffHP = O. 

From Section 5.1, the skew matrices X satisfying XP = 0 are a one- 
dimensional space. Since app = - ( p f  P)I  4 = 0 ,  tHPH = xaP is equivalent to 
tHPHP = 0, that  is, to PHP = 0. Consequently the lines o f P  3 that are fixed 
under the antipolarity are exactly the generators of  the Hermitean quadric ¢ .  

6. The Isomorphism 

Throughout this section, let V, as in Section 4.2 ff., be the complex vector 
space of  dimension 6 of  8 x 8 matrices x = (_°  X x )  in C (8' 8), X in C (4' 4) 
skew, and having the quadratic form (x Ix) = - p f X .  From Section 4.2, C(V) = 
C (8, 8) and there also is D(V)  described. 

6.1. Motivated by the considerations of  Sections 5.5 and 5.6, define a 
complex conjugation a -+ Ca on C(V) = C (8' 8) by 

- H  -1 _ 0 -1 

where H is Hermitean t / t  = H, so e(Ca) = a. Indeed, this conjugation is the 
extension to C(V) of  the involutive antilinear transformation on V which 
describes the antipolarity of  5.5 between bivectors and bicovectors. If  
a = (~ DB),A . . . . .  D in C (4'4), then 

C t n-l~}a -H-1CtH-I~ 
= ' n A ' n - I  ] 

a is real, Ca = a, if  C = - tHBH and D = tHAtH-1. 
Hereafter, Hwi l l  always denote the Hermitean matrix H = (0 2 ~ )  of  

determinant det H = +1. 

6.2. 
form 

x = 

From Sections 4.1 and 6.t an element of  V and its conjugate have the 

f _  0 - d E  StB 

SB -aE  
0 ~~.~ E °  

and Cx = tB 

- d E  

/rE 
_ s t ~  

x is real, Cx = x, if a and d are real and s/~ =B. Set B = iXoE with Xo in C (2' 2). 
Then s/~ = (_i)sffsff ° = iES2o = itfi[o E, so s/~ = B when t)~ o = Xo. Set 

a = - Y + Z  and X o = (  x ° + x 3  x t - i x ~ )  
d = y + z x z +ix 2 x o x 3 
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Then real x have the form 

\-'(iXoE) (y + z)E] 
with x ° . . . . .  x 3, y, z real. These real elements of  V constitute the real sub- 
space Vo o f  dimension 6. 

Note that  det(iXoE) = - d e t  X 0 = - ( x ° )  z + (x 1)2 + (x2)2 + (x3)2. For x 
in Vo as above, we have 

(x Ix) = - p f X  = -ad + det B = - ( - y  + z ) (y  + z) + det (/XoE) 

= _(xO)2 + (xl )2  + (x2)2 + (x3)2 +y2  _ z 2 

The quadratic form (x Ix) of  V restricted to Vo has signature (2, 4), that is, 
(-++++-). 

Let Co, el ,  e2, e3, e+, e_ be the basis of  Vo obtained by taking successively 
x O, x I, x 2, x3 ,y ,  z equal to i and the others equal to 0. Thus, for example, eo 
is the 8 x 8 matrix having alternately i and - i  along the upper-right to lower- 
left diagonal and zeros elsewhere. This basis is orthonormal,  (ei le]) - TO, where 

A = +1, and 

o o1) o l a  

0 1 

0 

(/1: o) 
z = eoele2eae+e_ = i14 

6.3. By Section 3.3, D(Vo) consists o f  the real elements in D(V) of  4.2. 
For g = (o A o )  in D+(V), tDA = p 14, det A = det D =/92, p ~ 0 complex,lto be 
real, Cg = g, we must have D = tHAtH-1 by Section 6.1. From D = ptA- we 
obtain t.dHA = pH; bo th  t.4HA and H are Hermitean, so/9 is necessarily real. 

A' o ), whereA,  = X-IA,  Set p = eX 2, e = -+1, X >  0 real, t h e n g  = X( o etA'- '  
etA '-1 = X-ID,  det A'  = +1, and tA'HA' = ell. Hence 

D + ( V ° ) =  {X( A etOA-1)[ t~HA=eH'detA=+l}e=+l,x>Oreal 

In a similar fashion, one obtains for the other coset o f  D+(Vo) in D(Vo) 

Since tH-I = 11, or equivalently, ( _ o  ~,) is real, the condition on B is the 
same as that  on A. 
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o o B) in D(Vo), we have from Section 4.4 that Forg = k(o A et°- , )  or k(ets-, 
Ng = k2e. Hence the spin groups of Vo are 

Spin(Vo) = 

,A ) 0 
0 etA-1 

(:_1 :) 

tAHA =eH ] 
I 

detA=+l'e=+-I t 

t~H B = _etH-1 
detB =+l,e =-+lj 

Spin+(Vo) = etA-1 det A = + 1, e = -+ 1 

Spinl(V°)= (( A t O - l ) I  tAHA=HtdetA = +1, 

Only Spin 1 (Vo) is a subgroup of the group G of Section 4.3. 
Denote by SU(2, 2) the group of all matrices A in C O'a) for which tAHA = 

H and det A = + 1; these are the matrices of the linear transformations of 
determinant + I which preserve the Hermitean form 

tycHx =21x a +.~2X4 +~-3X1 + ~4X2 

= ½IX 1 +X3[2 _ ½iX 1 _ X312 + i[X2 +X 4 [2 _ ½iX 2 _ X412 

of signature (2, 2). SU(2, 2) is connected and of real dimension 15, but is not 
simply connected. 

Spin1 (Vo) is isomorphic to SU(2, 2), so Spin(Vo) and Spin+(Vo) have 
four and two components, respectively. Representatives of these components 
are 

1 a = I~20 
e = + l  

e 0 = 

e = - - I  

z = (  -i14 

o 
12 

12 O"  

0 1 

t 
ig 

iE 0 
0 

l _  0 
0 [ - E  

exe2e3 = 0 E [  

I e = + l  E 0 

-i12 
eoe le2e3  =~ '  

e = - I  \ 0 

i 0, ) lies in Spinl(Vo) since A = +t. 

° ) 

0 il 

6. 4. The homomorphism p, p(g)x = gxIg -1 , maps D(V) and D(Vo) onto 
O(V) and O(Vo) with kernels C*" 1 s and ~*" 18, respectively. If we refer 
p(g) to the basis e o, ex, e2, e3, e+, e= of Section 6.2, ge]Xg -x = Eiei(p(g))i], 
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U = p(g) is a complex or real 6 x 6 matrix, respectively, satisfying turl~u = rl ± , 
where 7? -+ is as in Section 6.2. Thus p maps Spin(Vo) onto the real orthogonal 
group 0(2, 4; R), cf. Section 2.8, with kernel {+t8}. This latter group has 
four components, images of the four components of Spin(Vo) according to (0oo) 

p(18 ) = 16 , p(eie2es ) = - l a  
0 12 

i- 0) t-l: p(eo )= '""0"013 0 , P(e°ele2es)= 1 

1 

These may be obtained by noting that p(ei) is the reflection in the hyperplane 
of V0 orthogonal to e i and passing through the origin, or by direct calculation 
using the techniques of Section 6.6 below. 

6.5. The homomorphism g ~ p(,g) mod{+ 16} maps Spin(Vo) onto PO(Vo) = 
O(Vo)/{ + 16} with kernel {-+ 1 s, +z}, since z lies in Spin(V0) and p(z) = -16 ,  
cf. Section 3.4. Consequently, we have the isomorphism we have been seeking: 

Spin(Vo)/{ + 18, +z} ~-PO(Vo) 

This is a real form of the isomorphism corresponding to A3 -~D3 of  Section 
4.3. Since {-+ 1 s, +z} and {+ 16} lie in the identity components of Spin(Vo) 
and O(Vo), respectively, these groups have four components. Since Spinl(Vo) 
is isomorphic to SU(2, 2), as in Section 6.3, the isomorphism restricted to the 
identity components is 

PSU(2, 2) = SU(2, 2)/{-+14, +i14} ~-O1(2, 4; R)/{+ 16} = p o l ( 2 ,  4; N) 

Let q5 be the Hermitean quadric txHx = 21x3 + x2x4 + x3x 1 + x4x2 = 0 
of real dimension 5 in complex projective space pS. A point of the Ptiicker 
quadric ~2, (xlx) = 0, in complex pS based on V represents a line of p3, as in 
Section 5.4. By Section 5.8, this line is a generator of q~ exactly when it is 
flexed under the antipolarity of 5.5. From Section 5.5 and 6.1, in terms o f x  in 
V which is formed from the matrices of Pliicker coordinates and dual co- 
ordinates of a line, this antipolarity operating on lines is given by the conjuga- 
tion x ~ ex. x in fZ is fixed if Cx is a nonzero scalar multiple of x, but, as in 
Section 3.3, we may arrange that x itself is fixed. Hence, the generators of 
are represented by the fixed points in ~2 of the conjugation x ~ Cx. This set of 
fixed points is the real quadric ~ ,  (x Ix) = - ( x ° )  2 + (xl)  2 + (x2) 2 + (xS) 2 + 
y 2 ,  z 2 = 0, cf, Section 6.2, in the real projective space Po s based on V0. 

Collineations and correlations o f P  3 correspond to collineations o f P  5 
which preserve ~2. This yields the isormorphism between D(V)[C*.  ( ls ,  z )  
and PO(V) in Section 5.4. Collineations and correlations o f P  s which preserve 

are those which commute with the antipolarity; as they operate on lines, 
that is on ~2, they preserve the set of fixed points • of the antipolarity, and 
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hence correspond to collineations of P0 s which preserve ~ ,  cf. Section 5.6. 
This yields the isomorphism between D(Vo)/~*" {18, z} -~ Spin(Vo)/(-+l s,-+z} 
and PO(Fo) above. 

Compactified Minkowski space # ,  cf. Section 2.8, is the space of generators 
of ¢ and the conformal transformations of  # are obtained as collineations and 
correlations permuting these generators: A point of • represents a generator of 
cb and the image of this point under a conformal transformation is the point of 

that represents the image of the generator under the corresponding collin- 
eation or correlation preserving ¢ ,  cf. Section 514. This is the geometric descrip- 
tion of the isolmorphism (Study, 1924, p. 235). 

6. 6. Rotations, translations, homotheties, and inversions are conformal 
transformations of  Minkowski space and its compactification • and hence are 
elements of  PO(Vo). We can exhibit explicitly elements g of  Spin(Vo) so that 
P(g) rood( +16}, from the isomorphism of Section 6.5, are these familiar 
transformations. Cf. Penrose (1967), p. 357 ff. 

o a n d g =  (o A o The technique is the following. For x = (-ax Xo ) in Vo etA-1 ) 
in Spin +(Vo), Ig = g, we have 

P(g)x=gxlg-l=(_etA-xOaxA- 1 eAXtoA)=(_a(eAOtA) eAXooA ) 

o 
SO X'  = gxlg -1 is determined by X '  = eAXtA. Similarfly, for g = (e tB -t  #), 
Zg = _g, we have X'  = eBaXtB. These, together with 

( I 
X= ~_t(iXoE ) (y +z)E] ' \S(iXoE) (-y +z)E] 

where 

X 0 -- 
x I + / )¢2  x 0 x 3 

cf. Section 6.2, allows p(g) in O(Vo) = 0(2, 4; g~) to be determined by 
expressing x . . . . .  x 3, y ,  z linearly in terms o f x  °, . . . ,  x3,y, z. 

A 0 A o 0 • • (2 2) Let g = (o tA-l)' A = (o tA-*), with Ao m C ' , det A o = +1. Then 
AHA = H and det A = + 1, so g lies in Spin 1 (Vo). Note that A o 1 = SA o, so 

J( = AXtA above becomes 

+=(Ao y++ , +  

= [(-Y + z)A°EtA iA°X°ESA° 1 
\-z++Jot(XoE)tAo C_v 

Now AoEtAo = AoSAo E = (det Ao)E = E and iAoXoES.4o = iAoXot+4o E, so 
we recognize X '  as 

(-y' +z')E iX;fi + ~ = [ (-y +z)E iAoXotAoE t 
-t(iXoE) (y' + z')E] \-t(k4oXot.4o E) O' + z)E ] 
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' t -  t r u 0 or Xo = A oXo A o, Y = Y, z = z. Hence p(g) = (o 1 ~ ) in O(Vo), where v in 

0(1, 3; •) is the matrix describing X~ = AoXotAo as in Section 3.9. Thus, g 
in Spin(Vo) describes a proper rotation or Lorentz transformation of ~I'. 

The map 

(:0 tOol)_.>( A tO_l), A= (~0 tOo l) 

is the inclusion of Spin 1 (Wo) of Section 3.8 in Spin I (Vo) which corresponds 
to the inclusion v -+ (~ o )  of ol(Wo) in 01(Vo), cf. Section 3.2. The natural 
extension of this to all of  Spin(Wo) will be discussed in Section 6.7. 

Let 

g = ( ~  t~-,),  A = ( I ~  1 ° ) 

with Mo in C (2, 2 ) The n g lie s in Spin * (Vo) exactly, when t~4Ha = H o r 
t + _ _ • t - 1 _  .~  _ a a a - t a  . • • Mo Mo-O.  S e t M o - i E  AoE - z A o ,  Ao-(a l+ia  2 aO_a a ),thecondltlon 
on M o becomes tA o = A o. If we expand the right side of X'  = AXtA  or 

ix': ] 
-'(oc;e) + z')u} 

= (  12 O ) { ( - y + z ) E  iXoE I~{ 12 O) 
iEtAo E-1 12 ~-t(iXoE) (y+z)E]  ~iEtAoE -I 12 

we obtain 

( - y  + z ) E  i(Xo + ( - y  +z)Ao)E) 
-t( i(Xo + ( - y  + z)Ao)E) 

where the starred entry is 

(y + z)E - EtAoE-I  Xo E - EtXoE-1Ao E - ( - y  + z)EtAoE-1AoE 

Now, EtAoE-1Ao = SAoA o = (det Ao)12 = -(aa)l  2, where aa = - (a° )  2 + 12 22 32 t 1 t 1 ( a )  + ( a )  + ( a )  , and, by polarization, E Ao E -  Xo +E X o E -  Ao = 
-2(ax)12, where ax = - a ° x  ° + alx  1 + a2x ~ +a3x 3. The starred entry is 
((y + z) + 2ax + aa(-y + z))E. Thus 

X~ = X  0 +Ao( -y  +z) 

- y '  +z'  = - y  +z 

y' + z' = y + z + 2ax + aa(-y + z) 
or 

y '  = ax + (1 - ½aa)y + ½aaz 

z' = ax -. ½aay + (1 + ½aa)z 
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Hence 

p(g)= 

/ 
14 

_aOala2a 3 

_aOala2a 3 

_ a  o a o 

_ a  1 g l  

_ a  2 a 2 

- - a  3 tl 3 

l ' ' - l a a  "~aa ....... 

- ½aa 1 + ½a 

in O(Vo).  From Section 2.8, g in Spin(Vo) describes the translation x ' i = x  i +a i 
of ~ .  

In the same manner, one ascertains that 

g =  etA . , A = 

in Spin÷(Vo) has image 

a 0 ~, a ~ 0  real 
a12] e=_+l 

-~(X+ 1 /x )O(x-  1/3,)t 

1(3, - l/X) I(X + l/X)] 

in O(Vo), where X = ea 2. From Section 2.8, g in Spin(Vo) describes the 
homothety x' i = Xx i of q~. 

Finally, from Section 6.2, 

(0 0 

°10 e+ = ~ !  

in Spin(Vo) has image o) 
- - 1  ' '  

0 

in O(Vo).  By Section 2.8, e+ describes inversion in the unit sphere centered at 
the origin in ~ .  

6.7. The subspace of  Vo consisting o fx  ; (  ° x oX),x=(  °Ux E" o x °E) '  
- -  _ 0 ~ )  

t Jr o = X o, is isomorphic to Wo of Section 3.7, for (x Ix) = - p f X  = det(iXo E)  = 
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--det X o. The same assertion applies to the subspace of V consisting of x with 
Xo in C (2' 2) and W of Sections 3.5 ff. Such an x can be written 

= F - 1  

X = t 0 o (iE)-~Xo 
iE)-l~Xo 0 

o 0 0 

0 0 
sx o 

~Xo(iE) 

0 

F, F = 0 12 0 
12 0 iE 

12 0 

Hence, the latter snbspace is the image of W under the inclusion 

(~ 

__o 
iE)-i C 

B 

0 

0 
D 
(iE) - IB  

C 
o 

CqE) 
(iE)-IA(iE) 
0 (iE)-ID(iE)/ 

F 

0 
-ie/ 

to be 

(: (:0) (oO:o) o detAo = +1 ~ A = e = +1 
s ' - 1  ~ 1 o tA 

(~o StAo), d e t A o = _ i  _+(A _ ~ _ , ) ,  A=(0Ao t~_o l ) ,  e = - t  

:) (o :) (o 
0 o , detBo =+1 ~ -1 B = 1E , e = - 1  

o - ' it/)o 

( B )  (t0B B) 0 o ° E )  e = + l  0 o , d e t B o = - l ~  -i , B =  ~E st~ o it[lo ' 

of C (4' 4) in C (s' 8) A , . . . ,  D in C (2' 2). This is just the extension of the 
inclusion of W in I ] to the inclusion of C(W) = C (4' 4) in C(V) = C (8' 8)  

The considerations of Section 3.3 and 3.2 apply, and the inclusion above 
sends Spin(Wo) into Spin(Vo). Indeed, from the descriptions of these groups 
in Sections 3.8 and 6.3, one obtains the inclusion on the various components 
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Here we employ SA o =Ao 1 o r - A o  1 as detAo =+1 o r - 1  to make the 
necessary calculations. Note that the elements 1, eo, eleze3, eoele2e3 of 3.8 
which represent the components of Spin(Wo) are sent to those of Section 6.3 
which represent the components of Spin(Vo). 

From Section 3.2, this inclusion of Spin(Wo) in Spin(Vo) corresponds to 
the inclusion v -~ (g ~) of O(Wo) in O(Vo). One component of the image of 
Spin(Wo) lies in each component of Spin(Vo), likewise for O(Wo) and O(Vo). 
The correspondence respects the components. 

6. 8. Conformal transformations of @ constitute the group PO(Vo) = 
O(Vo)/( +16 ). Rotations or Lorentz transformations of Minkowski space con- 
stitute the group O(Wo), are conformal transformations, and are obtained 
from the inclusion v -* (~ °2)mod(+l 6} of O(Wo) in PO(Vo). The homomor- 
phism g -~ p(g) rnod {-+ 16 } maps Spin(Vo) onto PO(Vo ) with kernel {+ 1 s, +_z}, 
z = (~il ,  io  ). From Section 6.7, the image of Spin(Wo) in Spin(Vo) meets 
this kernel i~ exactly (+ls}, so this homomorphism restricts to the image of 
Spin(Wo) as the homomorphism p of Spin(Wo) onto O(Wo). Hence, as in 3.4, 
the inclusion of Spin(Wo) in Spin(Vo) corresponds to the inclusion of O(Wo) 
in eO( Vo). 

Spin(Wo) incl; Spin(Vo) 

2 t o l  I 14tO1 
O(14/0 ) incl; PO(Vo) 

The correspondence respects components. 
Thus the geometry of Minkowski space with group O(Wo) extends to the 

conformal geometry of its compactification ~ with group PO(Vo) as a natural 
consequence of the inclusion of Spin(Wo)in Spin(Vo). 
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